diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
commit | 1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch) | |
tree | 579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/ldouble/ellpjl.c | |
parent | 22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff) |
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/ldouble/ellpjl.c')
-rw-r--r-- | libm/ldouble/ellpjl.c | 164 |
1 files changed, 164 insertions, 0 deletions
diff --git a/libm/ldouble/ellpjl.c b/libm/ldouble/ellpjl.c new file mode 100644 index 000000000..bb57fe6a1 --- /dev/null +++ b/libm/ldouble/ellpjl.c @@ -0,0 +1,164 @@ +/* ellpjl.c + * + * Jacobian Elliptic Functions + * + * + * + * SYNOPSIS: + * + * long double u, m, sn, cn, dn, phi; + * int ellpjl(); + * + * ellpjl( u, m, _&sn, _&cn, _&dn, _&phi ); + * + * + * + * DESCRIPTION: + * + * + * Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m), + * and dn(u|m) of parameter m between 0 and 1, and real + * argument u. + * + * These functions are periodic, with quarter-period on the + * real axis equal to the complete elliptic integral + * ellpk(1.0-m). + * + * Relation to incomplete elliptic integral: + * If u = ellik(phi,m), then sn(u|m) = sin(phi), + * and cn(u|m) = cos(phi). Phi is called the amplitude of u. + * + * Computation is by means of the arithmetic-geometric mean + * algorithm, except when m is within 1e-12 of 0 or 1. In the + * latter case with m close to 1, the approximation applies + * only for phi < pi/2. + * + * ACCURACY: + * + * Tested at random points with u between 0 and 10, m between + * 0 and 1. + * + * Absolute error (* = relative error): + * arithmetic function # trials peak rms + * IEEE sn 10000 1.7e-18 2.3e-19 + * IEEE cn 20000 1.6e-18 2.2e-19 + * IEEE dn 10000 4.7e-15 2.7e-17 + * IEEE phi 10000 4.0e-19* 6.6e-20* + * + * Accuracy deteriorates when u is large. + * + */ + +/* +Cephes Math Library Release 2.3: November, 1995 +Copyright 1984, 1987, 1995 by Stephen L. Moshier +*/ + +#include <math.h> +#ifdef ANSIPROT +extern long double sqrtl ( long double ); +extern long double fabsl ( long double ); +extern long double sinl ( long double ); +extern long double cosl ( long double ); +extern long double asinl ( long double ); +extern long double tanhl ( long double ); +extern long double sinhl ( long double ); +extern long double coshl ( long double ); +extern long double atanl ( long double ); +extern long double expl ( long double ); +#else +long double sqrtl(), fabsl(), sinl(), cosl(), asinl(), tanhl(); +long double sinhl(), coshl(), atanl(), expl(); +#endif +extern long double PIO2L, MACHEPL; + +int ellpjl( u, m, sn, cn, dn, ph ) +long double u, m; +long double *sn, *cn, *dn, *ph; +{ +long double ai, b, phi, t, twon; +long double a[9], c[9]; +int i; + + +/* Check for special cases */ + +if( m < 0.0L || m > 1.0L ) + { + mtherr( "ellpjl", DOMAIN ); + *sn = 0.0L; + *cn = 0.0L; + *ph = 0.0L; + *dn = 0.0L; + return(-1); + } +if( m < 1.0e-12L ) + { + t = sinl(u); + b = cosl(u); + ai = 0.25L * m * (u - t*b); + *sn = t - ai*b; + *cn = b + ai*t; + *ph = u - ai; + *dn = 1.0L - 0.5L*m*t*t; + return(0); + } + +if( m >= 0.999999999999L ) + { + ai = 0.25L * (1.0L-m); + b = coshl(u); + t = tanhl(u); + phi = 1.0L/b; + twon = b * sinhl(u); + *sn = t + ai * (twon - u)/(b*b); + *ph = 2.0L*atanl(expl(u)) - PIO2L + ai*(twon - u)/b; + ai *= t * phi; + *cn = phi - ai * (twon - u); + *dn = phi + ai * (twon + u); + return(0); + } + + +/* A. G. M. scale */ +a[0] = 1.0L; +b = sqrtl(1.0L - m); +c[0] = sqrtl(m); +twon = 1.0L; +i = 0; + +while( fabsl(c[i]/a[i]) > MACHEPL ) + { + if( i > 7 ) + { + mtherr( "ellpjl", OVERFLOW ); + goto done; + } + ai = a[i]; + ++i; + c[i] = 0.5L * ( ai - b ); + t = sqrtl( ai * b ); + a[i] = 0.5L * ( ai + b ); + b = t; + twon *= 2.0L; + } + +done: + +/* backward recurrence */ +phi = twon * a[i] * u; +do + { + t = c[i] * sinl(phi) / a[i]; + b = phi; + phi = 0.5L * (asinl(t) + phi); + } +while( --i ); + +*sn = sinl(phi); +t = cosl(phi); +*cn = t; +*dn = t/cosl(phi-b); +*ph = phi; +return(0); +} |