diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
commit | 1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch) | |
tree | 579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/ldouble/clogl.c | |
parent | 22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff) |
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/ldouble/clogl.c')
-rw-r--r-- | libm/ldouble/clogl.c | 720 |
1 files changed, 720 insertions, 0 deletions
diff --git a/libm/ldouble/clogl.c b/libm/ldouble/clogl.c new file mode 100644 index 000000000..b3e6b25fb --- /dev/null +++ b/libm/ldouble/clogl.c @@ -0,0 +1,720 @@ +/* clogl.c + * + * Complex natural logarithm + * + * + * + * SYNOPSIS: + * + * void clogl(); + * cmplxl z, w; + * + * clogl( &z, &w ); + * + * + * + * DESCRIPTION: + * + * Returns complex logarithm to the base e (2.718...) of + * the complex argument x. + * + * If z = x + iy, r = sqrt( x**2 + y**2 ), + * then + * w = log(r) + i arctan(y/x). + * + * The arctangent ranges from -PI to +PI. + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC -10,+10 7000 8.5e-17 1.9e-17 + * IEEE -10,+10 30000 5.0e-15 1.1e-16 + * + * Larger relative error can be observed for z near 1 +i0. + * In IEEE arithmetic the peak absolute error is 5.2e-16, rms + * absolute error 1.0e-16. + */ + +#include <math.h> +#ifdef ANSIPROT +static void cchshl ( long double x, long double *c, long double *s ); +static long double redupil ( long double x ); +static long double ctansl ( cmplxl *z ); +long double cabsl ( cmplxl *x ); +void csqrtl ( cmplxl *x, cmplxl *y ); +void caddl ( cmplxl *x, cmplxl *y, cmplxl *z ); +extern long double fabsl ( long double ); +extern long double sqrtl ( long double ); +extern long double logl ( long double ); +extern long double expl ( long double ); +extern long double atan2l ( long double, long double ); +extern long double coshl ( long double ); +extern long double sinhl ( long double ); +extern long double asinl ( long double ); +extern long double sinl ( long double ); +extern long double cosl ( long double ); +void clogl ( cmplxl *, cmplxl *); +void casinl ( cmplxl *, cmplxl *); +#else +static void cchshl(); +static long double redupil(); +static long double ctansl(); +long double cabsl(), fabsl(), sqrtl(); +lnog double logl(), expl(), atan2l(), coshl(), sinhl(); +long double asinl(), sinl(), cosl(); +void caddl(), csqrtl(), clogl(), casinl(); +#endif + +extern long double MAXNUML, MACHEPL, PIL, PIO2L; + +void clogl( z, w ) +register cmplxl *z, *w; +{ +long double p, rr; + +/*rr = sqrt( z->r * z->r + z->i * z->i );*/ +rr = cabsl(z); +p = logl(rr); +#if ANSIC +rr = atan2l( z->i, z->r ); +#else +rr = atan2l( z->r, z->i ); +if( rr > PIL ) + rr -= PIL + PIL; +#endif +w->i = rr; +w->r = p; +} +/* cexpl() + * + * Complex exponential function + * + * + * + * SYNOPSIS: + * + * void cexpl(); + * cmplxl z, w; + * + * cexpl( &z, &w ); + * + * + * + * DESCRIPTION: + * + * Returns the exponential of the complex argument z + * into the complex result w. + * + * If + * z = x + iy, + * r = exp(x), + * + * then + * + * w = r cos y + i r sin y. + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC -10,+10 8700 3.7e-17 1.1e-17 + * IEEE -10,+10 30000 3.0e-16 8.7e-17 + * + */ + +void cexpl( z, w ) +register cmplxl *z, *w; +{ +long double r; + +r = expl( z->r ); +w->r = r * cosl( z->i ); +w->i = r * sinl( z->i ); +} +/* csinl() + * + * Complex circular sine + * + * + * + * SYNOPSIS: + * + * void csinl(); + * cmplxl z, w; + * + * csinl( &z, &w ); + * + * + * + * DESCRIPTION: + * + * If + * z = x + iy, + * + * then + * + * w = sin x cosh y + i cos x sinh y. + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC -10,+10 8400 5.3e-17 1.3e-17 + * IEEE -10,+10 30000 3.8e-16 1.0e-16 + * Also tested by csin(casin(z)) = z. + * + */ + +void csinl( z, w ) +register cmplxl *z, *w; +{ +long double ch, sh; + +cchshl( z->i, &ch, &sh ); +w->r = sinl( z->r ) * ch; +w->i = cosl( z->r ) * sh; +} + + + +/* calculate cosh and sinh */ + +static void cchshl( x, c, s ) +long double x, *c, *s; +{ +long double e, ei; + +if( fabsl(x) <= 0.5L ) + { + *c = coshl(x); + *s = sinhl(x); + } +else + { + e = expl(x); + ei = 0.5L/e; + e = 0.5L * e; + *s = e - ei; + *c = e + ei; + } +} + +/* ccosl() + * + * Complex circular cosine + * + * + * + * SYNOPSIS: + * + * void ccosl(); + * cmplxl z, w; + * + * ccosl( &z, &w ); + * + * + * + * DESCRIPTION: + * + * If + * z = x + iy, + * + * then + * + * w = cos x cosh y - i sin x sinh y. + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC -10,+10 8400 4.5e-17 1.3e-17 + * IEEE -10,+10 30000 3.8e-16 1.0e-16 + */ + +void ccosl( z, w ) +register cmplxl *z, *w; +{ +long double ch, sh; + +cchshl( z->i, &ch, &sh ); +w->r = cosl( z->r ) * ch; +w->i = -sinl( z->r ) * sh; +} +/* ctanl() + * + * Complex circular tangent + * + * + * + * SYNOPSIS: + * + * void ctanl(); + * cmplxl z, w; + * + * ctanl( &z, &w ); + * + * + * + * DESCRIPTION: + * + * If + * z = x + iy, + * + * then + * + * sin 2x + i sinh 2y + * w = --------------------. + * cos 2x + cosh 2y + * + * On the real axis the denominator is zero at odd multiples + * of PI/2. The denominator is evaluated by its Taylor + * series near these points. + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC -10,+10 5200 7.1e-17 1.6e-17 + * IEEE -10,+10 30000 7.2e-16 1.2e-16 + * Also tested by ctan * ccot = 1 and catan(ctan(z)) = z. + */ + +void ctanl( z, w ) +register cmplxl *z, *w; +{ +long double d; + +d = cosl( 2.0L * z->r ) + coshl( 2.0L * z->i ); + +if( fabsl(d) < 0.25L ) + d = ctansl(z); + +if( d == 0.0L ) + { + mtherr( "ctan", OVERFLOW ); + w->r = MAXNUML; + w->i = MAXNUML; + return; + } + +w->r = sinl( 2.0L * z->r ) / d; +w->i = sinhl( 2.0L * z->i ) / d; +} +/* ccotl() + * + * Complex circular cotangent + * + * + * + * SYNOPSIS: + * + * void ccotl(); + * cmplxl z, w; + * + * ccotl( &z, &w ); + * + * + * + * DESCRIPTION: + * + * If + * z = x + iy, + * + * then + * + * sin 2x - i sinh 2y + * w = --------------------. + * cosh 2y - cos 2x + * + * On the real axis, the denominator has zeros at even + * multiples of PI/2. Near these points it is evaluated + * by a Taylor series. + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC -10,+10 3000 6.5e-17 1.6e-17 + * IEEE -10,+10 30000 9.2e-16 1.2e-16 + * Also tested by ctan * ccot = 1 + i0. + */ + +void ccotl( z, w ) +register cmplxl *z, *w; +{ +long double d; + +d = coshl(2.0L * z->i) - cosl(2.0L * z->r); + +if( fabsl(d) < 0.25L ) + d = ctansl(z); + +if( d == 0.0L ) + { + mtherr( "ccot", OVERFLOW ); + w->r = MAXNUML; + w->i = MAXNUML; + return; + } + +w->r = sinl( 2.0L * z->r ) / d; +w->i = -sinhl( 2.0L * z->i ) / d; +} + +/* Program to subtract nearest integer multiple of PI */ +/* extended precision value of PI: */ +#ifdef UNK +static double DP1 = 3.14159265160560607910E0; +static double DP2 = 1.98418714791870343106E-9; +static double DP3 = 1.14423774522196636802E-17; +#endif + +#ifdef DEC +static unsigned short P1[] = {0040511,0007732,0120000,0000000,}; +static unsigned short P2[] = {0031010,0055060,0100000,0000000,}; +static unsigned short P3[] = {0022123,0011431,0105056,0001560,}; +#define DP1 *(double *)P1 +#define DP2 *(double *)P2 +#define DP3 *(double *)P3 +#endif + +#ifdef IBMPC +static unsigned short P1[] = {0x0000,0x5400,0x21fb,0x4009}; +static unsigned short P2[] = {0x0000,0x1000,0x0b46,0x3e21}; +static unsigned short P3[] = {0xc06e,0x3145,0x6263,0x3c6a}; +#define DP1 *(double *)P1 +#define DP2 *(double *)P2 +#define DP3 *(double *)P3 +#endif + +#ifdef MIEEE +static unsigned short P1[] = { +0x4009,0x21fb,0x5400,0x0000 +}; +static unsigned short P2[] = { +0x3e21,0x0b46,0x1000,0x0000 +}; +static unsigned short P3[] = { +0x3c6a,0x6263,0x3145,0xc06e +}; +#define DP1 *(double *)P1 +#define DP2 *(double *)P2 +#define DP3 *(double *)P3 +#endif + +static long double redupil(x) +long double x; +{ +long double t; +long i; + +t = x/PIL; +if( t >= 0.0L ) + t += 0.5L; +else + t -= 0.5L; + +i = t; /* the multiple */ +t = i; +t = ((x - t * DP1) - t * DP2) - t * DP3; +return(t); +} + +/* Taylor series expansion for cosh(2y) - cos(2x) */ + +static long double ctansl(z) +cmplxl *z; +{ +long double f, x, x2, y, y2, rn, t; +long double d; + +x = fabsl( 2.0L * z->r ); +y = fabsl( 2.0L * z->i ); + +x = redupil(x); + +x = x * x; +y = y * y; +x2 = 1.0L; +y2 = 1.0L; +f = 1.0L; +rn = 0.0; +d = 0.0; +do + { + rn += 1.0L; + f *= rn; + rn += 1.0L; + f *= rn; + x2 *= x; + y2 *= y; + t = y2 + x2; + t /= f; + d += t; + + rn += 1.0L; + f *= rn; + rn += 1.0L; + f *= rn; + x2 *= x; + y2 *= y; + t = y2 - x2; + t /= f; + d += t; + } +while( fabsl(t/d) > MACHEPL ); +return(d); +} +/* casinl() + * + * Complex circular arc sine + * + * + * + * SYNOPSIS: + * + * void casinl(); + * cmplxl z, w; + * + * casinl( &z, &w ); + * + * + * + * DESCRIPTION: + * + * Inverse complex sine: + * + * 2 + * w = -i clog( iz + csqrt( 1 - z ) ). + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC -10,+10 10100 2.1e-15 3.4e-16 + * IEEE -10,+10 30000 2.2e-14 2.7e-15 + * Larger relative error can be observed for z near zero. + * Also tested by csin(casin(z)) = z. + */ + +void casinl( z, w ) +cmplxl *z, *w; +{ +static cmplxl ca, ct, zz, z2; +long double x, y; + +x = z->r; +y = z->i; + +if( y == 0.0L ) + { + if( fabsl(x) > 1.0L ) + { + w->r = PIO2L; + w->i = 0.0L; + mtherr( "casinl", DOMAIN ); + } + else + { + w->r = asinl(x); + w->i = 0.0L; + } + return; + } + +/* Power series expansion */ +/* +b = cabsl(z); +if( b < 0.125L ) +{ +z2.r = (x - y) * (x + y); +z2.i = 2.0L * x * y; + +cn = 1.0L; +n = 1.0L; +ca.r = x; +ca.i = y; +sum.r = x; +sum.i = y; +do + { + ct.r = z2.r * ca.r - z2.i * ca.i; + ct.i = z2.r * ca.i + z2.i * ca.r; + ca.r = ct.r; + ca.i = ct.i; + + cn *= n; + n += 1.0L; + cn /= n; + n += 1.0L; + b = cn/n; + + ct.r *= b; + ct.i *= b; + sum.r += ct.r; + sum.i += ct.i; + b = fabsl(ct.r) + fabs(ct.i); + } +while( b > MACHEPL ); +w->r = sum.r; +w->i = sum.i; +return; +} +*/ + + +ca.r = x; +ca.i = y; + +ct.r = -ca.i; /* iz */ +ct.i = ca.r; + + /* sqrt( 1 - z*z) */ +/* cmul( &ca, &ca, &zz ) */ +zz.r = (ca.r - ca.i) * (ca.r + ca.i); /*x * x - y * y */ +zz.i = 2.0L * ca.r * ca.i; + +zz.r = 1.0L - zz.r; +zz.i = -zz.i; +csqrtl( &zz, &z2 ); + +caddl( &z2, &ct, &zz ); +clogl( &zz, &zz ); +w->r = zz.i; /* mult by 1/i = -i */ +w->i = -zz.r; +return; +} +/* cacosl() + * + * Complex circular arc cosine + * + * + * + * SYNOPSIS: + * + * void cacosl(); + * cmplxl z, w; + * + * cacosl( &z, &w ); + * + * + * + * DESCRIPTION: + * + * + * w = arccos z = PI/2 - arcsin z. + * + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC -10,+10 5200 1.6e-15 2.8e-16 + * IEEE -10,+10 30000 1.8e-14 2.2e-15 + */ + +void cacosl( z, w ) +cmplxl *z, *w; +{ + +casinl( z, w ); +w->r = PIO2L - w->r; +w->i = -w->i; +} +/* catanl() + * + * Complex circular arc tangent + * + * + * + * SYNOPSIS: + * + * void catanl(); + * cmplxl z, w; + * + * catanl( &z, &w ); + * + * + * + * DESCRIPTION: + * + * If + * z = x + iy, + * + * then + * 1 ( 2x ) + * Re w = - arctan(-----------) + k PI + * 2 ( 2 2) + * (1 - x - y ) + * + * ( 2 2) + * 1 (x + (y+1) ) + * Im w = - log(------------) + * 4 ( 2 2) + * (x + (y-1) ) + * + * Where k is an arbitrary integer. + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC -10,+10 5900 1.3e-16 7.8e-18 + * IEEE -10,+10 30000 2.3e-15 8.5e-17 + * The check catan( ctan(z) ) = z, with |x| and |y| < PI/2, + * had peak relative error 1.5e-16, rms relative error + * 2.9e-17. See also clog(). + */ + +void catanl( z, w ) +cmplxl *z, *w; +{ +long double a, t, x, x2, y; + +x = z->r; +y = z->i; + +if( (x == 0.0L) && (y > 1.0L) ) + goto ovrf; + +x2 = x * x; +a = 1.0L - x2 - (y * y); +if( a == 0.0L ) + goto ovrf; + +#if ANSIC +t = atan2l( 2.0L * x, a ) * 0.5L; +#else +t = atan2l( a, 2.0 * x ) * 0.5L; +#endif +w->r = redupil( t ); + +t = y - 1.0L; +a = x2 + (t * t); +if( a == 0.0L ) + goto ovrf; + +t = y + 1.0L; +a = (x2 + (t * t))/a; +w->i = logl(a)/4.0; +return; + +ovrf: +mtherr( "catanl", OVERFLOW ); +w->r = MAXNUML; +w->i = MAXNUML; +} |