diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
commit | 7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch) | |
tree | 3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/float | |
parent | c117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff) |
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD).
-Erik
Diffstat (limited to 'libm/float')
82 files changed, 0 insertions, 20647 deletions
diff --git a/libm/float/Makefile b/libm/float/Makefile deleted file mode 100644 index 80f7aa1ff..000000000 --- a/libm/float/Makefile +++ /dev/null @@ -1,59 +0,0 @@ -# Makefile for uClibc's math library -# Copyright (C) 2001 by Lineo, inc. -# -# This math library is derived primarily from the Cephes Math Library, -# copyright by Stephen L. Moshier <moshier@world.std.com> -# -# This program is free software; you can redistribute it and/or modify it under -# the terms of the GNU Library General Public License as published by the Free -# Software Foundation; either version 2 of the License, or (at your option) any -# later version. -# -# This program is distributed in the hope that it will be useful, but WITHOUT -# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS -# FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more -# details. -# -# You should have received a copy of the GNU Library General Public License -# along with this program; if not, write to the Free Software Foundation, Inc., -# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -# - -TOPDIR=../../ -include $(TOPDIR)Rules.mak - -LIBM=../libm.a -TARGET_CC= $(TOPDIR)/extra/gcc-uClibc/$(TARGET_ARCH)-uclibc-gcc - -CSRC= acoshf.c airyf.c asinf.c asinhf.c atanf.c \ - atanhf.c bdtrf.c betaf.c cbrtf.c chbevlf.c chdtrf.c \ - clogf.c cmplxf.c constf.c coshf.c dawsnf.c ellief.c \ - ellikf.c ellpef.c ellpkf.c ellpjf.c expf.c exp2f.c \ - exp10f.c expnf.c facf.c fdtrf.c floorf.c fresnlf.c \ - gammaf.c gdtrf.c hypergf.c hyp2f1f.c igamf.c igamif.c \ - incbetf.c incbif.c i0f.c i1f.c ivf.c j0f.c j1f.c \ - jnf.c jvf.c k0f.c k1f.c knf.c logf.c log2f.c \ - log10f.c nbdtrf.c ndtrf.c ndtrif.c pdtrf.c polynf.c \ - powif.c powf.c psif.c rgammaf.c shichif.c sicif.c \ - sindgf.c sinf.c sinhf.c spencef.c sqrtf.c stdtrf.c \ - struvef.c tandgf.c tanf.c tanhf.c ynf.c zetaf.c \ - zetacf.c polevlf.c setprec.c mtherr.c -COBJS=$(patsubst %.c,%.o, $(CSRC)) -OBJS=$(COBJS) - -all: $(OBJS) $(LIBM) - -$(LIBM): ar-target - -ar-target: $(OBJS) - $(AR) $(ARFLAGS) $(LIBM) $(OBJS) - -$(COBJS): %.o : %.c - $(TARGET_CC) $(TARGET_CFLAGS) -c $< -o $@ - $(STRIPTOOL) -x -R .note -R .comment $*.o - -$(OBJ): Makefile - -clean: - rm -f *.[oa] *~ core - diff --git a/libm/float/README.txt b/libm/float/README.txt deleted file mode 100644 index 30a10b083..000000000 --- a/libm/float/README.txt +++ /dev/null @@ -1,4721 +0,0 @@ -/* acoshf.c - * - * Inverse hyperbolic cosine - * - * - * - * SYNOPSIS: - * - * float x, y, acoshf(); - * - * y = acoshf( x ); - * - * - * - * DESCRIPTION: - * - * Returns inverse hyperbolic cosine of argument. - * - * If 1 <= x < 1.5, a polynomial approximation - * - * sqrt(z) * P(z) - * - * where z = x-1, is used. Otherwise, - * - * acosh(x) = log( x + sqrt( (x-1)(x+1) ). - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE 1,3 100000 1.8e-7 3.9e-8 - * IEEE 1,2000 100000 3.0e-8 - * - * - * ERROR MESSAGES: - * - * message condition value returned - * acoshf domain |x| < 1 0.0 - * - */ - -/* airy.c - * - * Airy function - * - * - * - * SYNOPSIS: - * - * float x, ai, aip, bi, bip; - * int airyf(); - * - * airyf( x, _&ai, _&aip, _&bi, _&bip ); - * - * - * - * DESCRIPTION: - * - * Solution of the differential equation - * - * y"(x) = xy. - * - * The function returns the two independent solutions Ai, Bi - * and their first derivatives Ai'(x), Bi'(x). - * - * Evaluation is by power series summation for small x, - * by rational minimax approximations for large x. - * - * - * - * ACCURACY: - * Error criterion is absolute when function <= 1, relative - * when function > 1, except * denotes relative error criterion. - * For large negative x, the absolute error increases as x^1.5. - * For large positive x, the relative error increases as x^1.5. - * - * Arithmetic domain function # trials peak rms - * IEEE -10, 0 Ai 50000 7.0e-7 1.2e-7 - * IEEE 0, 10 Ai 50000 9.9e-6* 6.8e-7* - * IEEE -10, 0 Ai' 50000 2.4e-6 3.5e-7 - * IEEE 0, 10 Ai' 50000 8.7e-6* 6.2e-7* - * IEEE -10, 10 Bi 100000 2.2e-6 2.6e-7 - * IEEE -10, 10 Bi' 50000 2.2e-6 3.5e-7 - * - */ - -/* asinf.c - * - * Inverse circular sine - * - * - * - * SYNOPSIS: - * - * float x, y, asinf(); - * - * y = asinf( x ); - * - * - * - * DESCRIPTION: - * - * Returns radian angle between -pi/2 and +pi/2 whose sine is x. - * - * A polynomial of the form x + x**3 P(x**2) - * is used for |x| in the interval [0, 0.5]. If |x| > 0.5 it is - * transformed by the identity - * - * asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ). - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -1, 1 100000 2.5e-7 5.0e-8 - * - * - * ERROR MESSAGES: - * - * message condition value returned - * asinf domain |x| > 1 0.0 - * - */ -/* acosf() - * - * Inverse circular cosine - * - * - * - * SYNOPSIS: - * - * float x, y, acosf(); - * - * y = acosf( x ); - * - * - * - * DESCRIPTION: - * - * Returns radian angle between -pi/2 and +pi/2 whose cosine - * is x. - * - * Analytically, acos(x) = pi/2 - asin(x). However if |x| is - * near 1, there is cancellation error in subtracting asin(x) - * from pi/2. Hence if x < -0.5, - * - * acos(x) = pi - 2.0 * asin( sqrt((1+x)/2) ); - * - * or if x > +0.5, - * - * acos(x) = 2.0 * asin( sqrt((1-x)/2) ). - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -1, 1 100000 1.4e-7 4.2e-8 - * - * - * ERROR MESSAGES: - * - * message condition value returned - * acosf domain |x| > 1 0.0 - */ - -/* asinhf.c - * - * Inverse hyperbolic sine - * - * - * - * SYNOPSIS: - * - * float x, y, asinhf(); - * - * y = asinhf( x ); - * - * - * - * DESCRIPTION: - * - * Returns inverse hyperbolic sine of argument. - * - * If |x| < 0.5, the function is approximated by a rational - * form x + x**3 P(x)/Q(x). Otherwise, - * - * asinh(x) = log( x + sqrt(1 + x*x) ). - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -3,3 100000 2.4e-7 4.1e-8 - * - */ - -/* atanf.c - * - * Inverse circular tangent - * (arctangent) - * - * - * - * SYNOPSIS: - * - * float x, y, atanf(); - * - * y = atanf( x ); - * - * - * - * DESCRIPTION: - * - * Returns radian angle between -pi/2 and +pi/2 whose tangent - * is x. - * - * Range reduction is from four intervals into the interval - * from zero to tan( pi/8 ). A polynomial approximates - * the function in this basic interval. - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10, 10 100000 1.9e-7 4.1e-8 - * - */ -/* atan2f() - * - * Quadrant correct inverse circular tangent - * - * - * - * SYNOPSIS: - * - * float x, y, z, atan2f(); - * - * z = atan2f( y, x ); - * - * - * - * DESCRIPTION: - * - * Returns radian angle whose tangent is y/x. - * Define compile time symbol ANSIC = 1 for ANSI standard, - * range -PI < z <= +PI, args (y,x); else ANSIC = 0 for range - * 0 to 2PI, args (x,y). - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10, 10 100000 1.9e-7 4.1e-8 - * See atan.c. - * - */ - -/* atanhf.c - * - * Inverse hyperbolic tangent - * - * - * - * SYNOPSIS: - * - * float x, y, atanhf(); - * - * y = atanhf( x ); - * - * - * - * DESCRIPTION: - * - * Returns inverse hyperbolic tangent of argument in the range - * MINLOGF to MAXLOGF. - * - * If |x| < 0.5, a polynomial approximation is used. - * Otherwise, - * atanh(x) = 0.5 * log( (1+x)/(1-x) ). - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -1,1 100000 1.4e-7 3.1e-8 - * - */ - -/* bdtrf.c - * - * Binomial distribution - * - * - * - * SYNOPSIS: - * - * int k, n; - * float p, y, bdtrf(); - * - * y = bdtrf( k, n, p ); - * - * - * - * DESCRIPTION: - * - * Returns the sum of the terms 0 through k of the Binomial - * probability density: - * - * k - * -- ( n ) j n-j - * > ( ) p (1-p) - * -- ( j ) - * j=0 - * - * The terms are not summed directly; instead the incomplete - * beta integral is employed, according to the formula - * - * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ). - * - * The arguments must be positive, with p ranging from 0 to 1. - * - * - * - * ACCURACY: - * - * Relative error (p varies from 0 to 1): - * arithmetic domain # trials peak rms - * IEEE 0,100 2000 6.9e-5 1.1e-5 - * - * ERROR MESSAGES: - * - * message condition value returned - * bdtrf domain k < 0 0.0 - * n < k - * x < 0, x > 1 - * - */ -/* bdtrcf() - * - * Complemented binomial distribution - * - * - * - * SYNOPSIS: - * - * int k, n; - * float p, y, bdtrcf(); - * - * y = bdtrcf( k, n, p ); - * - * - * - * DESCRIPTION: - * - * Returns the sum of the terms k+1 through n of the Binomial - * probability density: - * - * n - * -- ( n ) j n-j - * > ( ) p (1-p) - * -- ( j ) - * j=k+1 - * - * The terms are not summed directly; instead the incomplete - * beta integral is employed, according to the formula - * - * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ). - * - * The arguments must be positive, with p ranging from 0 to 1. - * - * - * - * ACCURACY: - * - * Relative error (p varies from 0 to 1): - * arithmetic domain # trials peak rms - * IEEE 0,100 2000 6.0e-5 1.2e-5 - * - * ERROR MESSAGES: - * - * message condition value returned - * bdtrcf domain x<0, x>1, n<k 0.0 - */ -/* bdtrif() - * - * Inverse binomial distribution - * - * - * - * SYNOPSIS: - * - * int k, n; - * float p, y, bdtrif(); - * - * p = bdtrf( k, n, y ); - * - * - * - * DESCRIPTION: - * - * Finds the event probability p such that the sum of the - * terms 0 through k of the Binomial probability density - * is equal to the given cumulative probability y. - * - * This is accomplished using the inverse beta integral - * function and the relation - * - * 1 - p = incbi( n-k, k+1, y ). - * - * - * - * - * ACCURACY: - * - * Relative error (p varies from 0 to 1): - * arithmetic domain # trials peak rms - * IEEE 0,100 2000 3.5e-5 3.3e-6 - * - * ERROR MESSAGES: - * - * message condition value returned - * bdtrif domain k < 0, n <= k 0.0 - * x < 0, x > 1 - * - */ - -/* betaf.c - * - * Beta function - * - * - * - * SYNOPSIS: - * - * float a, b, y, betaf(); - * - * y = betaf( a, b ); - * - * - * - * DESCRIPTION: - * - * - - - * | (a) | (b) - * beta( a, b ) = -----------. - * - - * | (a+b) - * - * For large arguments the logarithm of the function is - * evaluated using lgam(), then exponentiated. - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE 0,30 10000 4.0e-5 6.0e-6 - * IEEE -20,0 10000 4.9e-3 5.4e-5 - * - * ERROR MESSAGES: - * - * message condition value returned - * betaf overflow log(beta) > MAXLOG 0.0 |