summaryrefslogtreecommitdiff
path: root/libm/float/sinhf.c
diff options
context:
space:
mode:
authorEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
committerEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
commit7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch)
tree3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/float/sinhf.c
parentc117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff)
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD). -Erik
Diffstat (limited to 'libm/float/sinhf.c')
-rw-r--r--libm/float/sinhf.c87
1 files changed, 0 insertions, 87 deletions
diff --git a/libm/float/sinhf.c b/libm/float/sinhf.c
deleted file mode 100644
index e8baaf4fa..000000000
--- a/libm/float/sinhf.c
+++ /dev/null
@@ -1,87 +0,0 @@
-/* sinhf.c
- *
- * Hyperbolic sine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, sinhf();
- *
- * y = sinhf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns hyperbolic sine of argument in the range MINLOGF to
- * MAXLOGF.
- *
- * The range is partitioned into two segments. If |x| <= 1, a
- * polynomial approximation is used.
- * Otherwise the calculation is sinh(x) = ( exp(x) - exp(-x) )/2.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-MAXLOG 100000 1.1e-7 2.9e-8
- *
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Single precision hyperbolic sine
- * test interval: [-1, +1]
- * trials: 10000
- * peak relative error: 9.0e-8
- * rms relative error: 3.0e-8
- */
-#include <math.h>
-extern float MAXLOGF, MAXNUMF;
-
-float expf( float );
-
-float sinhf( float xx )
-{
-register float z;
-float x;
-
-x = xx;
-if( xx < 0 )
- z = -x;
-else
- z = x;
-
-if( z > MAXLOGF )
- {
- mtherr( "sinhf", DOMAIN );
- if( x > 0 )
- return( MAXNUMF );
- else
- return( -MAXNUMF );
- }
-if( z > 1.0 )
- {
- z = expf(z);
- z = 0.5*z - (0.5/z);
- if( x < 0 )
- z = -z;
- }
-else
- {
- z = x * x;
- z =
- (( 2.03721912945E-4 * z
- + 8.33028376239E-3) * z
- + 1.66667160211E-1) * z * x
- + x;
- }
-return( z );
-}