diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
commit | 1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch) | |
tree | 579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/float/ndtrif.c | |
parent | 22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff) |
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/float/ndtrif.c')
-rw-r--r-- | libm/float/ndtrif.c | 186 |
1 files changed, 186 insertions, 0 deletions
diff --git a/libm/float/ndtrif.c b/libm/float/ndtrif.c new file mode 100644 index 000000000..3e33bc2c5 --- /dev/null +++ b/libm/float/ndtrif.c @@ -0,0 +1,186 @@ +/* ndtrif.c + * + * Inverse of Normal distribution function + * + * + * + * SYNOPSIS: + * + * float x, y, ndtrif(); + * + * x = ndtrif( y ); + * + * + * + * DESCRIPTION: + * + * Returns the argument, x, for which the area under the + * Gaussian probability density function (integrated from + * minus infinity to x) is equal to y. + * + * + * For small arguments 0 < y < exp(-2), the program computes + * z = sqrt( -2.0 * log(y) ); then the approximation is + * x = z - log(z)/z - (1/z) P(1/z) / Q(1/z). + * There are two rational functions P/Q, one for 0 < y < exp(-32) + * and the other for y up to exp(-2). For larger arguments, + * w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)). + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 1e-38, 1 30000 3.6e-7 5.0e-8 + * + * + * ERROR MESSAGES: + * + * message condition value returned + * ndtrif domain x <= 0 -MAXNUM + * ndtrif domain x >= 1 MAXNUM + * + */ + + +/* +Cephes Math Library Release 2.2: July, 1992 +Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier +Direct inquiries to 30 Frost Street, Cambridge, MA 02140 +*/ + +#include <math.h> +extern float MAXNUMF; + +/* sqrt(2pi) */ +static float s2pi = 2.50662827463100050242; + +/* approximation for 0 <= |y - 0.5| <= 3/8 */ +static float P0[5] = { +-5.99633501014107895267E1, + 9.80010754185999661536E1, +-5.66762857469070293439E1, + 1.39312609387279679503E1, +-1.23916583867381258016E0, +}; +static float Q0[8] = { +/* 1.00000000000000000000E0,*/ + 1.95448858338141759834E0, + 4.67627912898881538453E0, + 8.63602421390890590575E1, +-2.25462687854119370527E2, + 2.00260212380060660359E2, +-8.20372256168333339912E1, + 1.59056225126211695515E1, +-1.18331621121330003142E0, +}; + +/* Approximation for interval z = sqrt(-2 log y ) between 2 and 8 + * i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14. + */ +static float P1[9] = { + 4.05544892305962419923E0, + 3.15251094599893866154E1, + 5.71628192246421288162E1, + 4.40805073893200834700E1, + 1.46849561928858024014E1, + 2.18663306850790267539E0, +-1.40256079171354495875E-1, +-3.50424626827848203418E-2, +-8.57456785154685413611E-4, +}; +static float Q1[8] = { +/* 1.00000000000000000000E0,*/ + 1.57799883256466749731E1, + 4.53907635128879210584E1, + 4.13172038254672030440E1, + 1.50425385692907503408E1, + 2.50464946208309415979E0, +-1.42182922854787788574E-1, +-3.80806407691578277194E-2, +-9.33259480895457427372E-4, +}; + + +/* Approximation for interval z = sqrt(-2 log y ) between 8 and 64 + * i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890. + */ + +static float P2[9] = { + 3.23774891776946035970E0, + 6.91522889068984211695E0, + 3.93881025292474443415E0, + 1.33303460815807542389E0, + 2.01485389549179081538E-1, + 1.23716634817820021358E-2, + 3.01581553508235416007E-4, + 2.65806974686737550832E-6, + 6.23974539184983293730E-9, +}; +static float Q2[8] = { +/* 1.00000000000000000000E0,*/ + 6.02427039364742014255E0, + 3.67983563856160859403E0, + 1.37702099489081330271E0, + 2.16236993594496635890E-1, + 1.34204006088543189037E-2, + 3.28014464682127739104E-4, + 2.89247864745380683936E-6, + 6.79019408009981274425E-9, +}; + +#ifdef ANSIC +float polevlf(float, float *, int); +float p1evlf(float, float *, int); +float logf(float), sqrtf(float); +#else +float polevlf(), p1evlf(), logf(), sqrtf(); +#endif + + +float ndtrif(float yy0) +{ +float y0, x, y, z, y2, x0, x1; +int code; + +y0 = yy0; +if( y0 <= 0.0 ) + { + mtherr( "ndtrif", DOMAIN ); + return( -MAXNUMF ); + } +if( y0 >= 1.0 ) + { + mtherr( "ndtrif", DOMAIN ); + return( MAXNUMF ); + } +code = 1; +y = y0; +if( y > (1.0 - 0.13533528323661269189) ) /* 0.135... = exp(-2) */ + { + y = 1.0 - y; + code = 0; + } + +if( y > 0.13533528323661269189 ) + { + y = y - 0.5; + y2 = y * y; + x = y + y * (y2 * polevlf( y2, P0, 4)/p1evlf( y2, Q0, 8 )); + x = x * s2pi; + return(x); + } + +x = sqrtf( -2.0 * logf(y) ); +x0 = x - logf(x)/x; + +z = 1.0/x; +if( x < 8.0 ) /* y > exp(-32) = 1.2664165549e-14 */ + x1 = z * polevlf( z, P1, 8 )/p1evlf( z, Q1, 8 ); +else + x1 = z * polevlf( z, P2, 8 )/p1evlf( z, Q2, 8 ); +x = x0 - x1; +if( code != 0 ) + x = -x; +return( x ); +} |