diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
commit | 7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch) | |
tree | 3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/float/j1f.c | |
parent | c117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff) |
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD).
-Erik
Diffstat (limited to 'libm/float/j1f.c')
-rw-r--r-- | libm/float/j1f.c | 211 |
1 files changed, 0 insertions, 211 deletions
diff --git a/libm/float/j1f.c b/libm/float/j1f.c deleted file mode 100644 index 4306e9747..000000000 --- a/libm/float/j1f.c +++ /dev/null @@ -1,211 +0,0 @@ -/* j1f.c - * - * Bessel function of order one - * - * - * - * SYNOPSIS: - * - * float x, y, j1f(); - * - * y = j1f( x ); - * - * - * - * DESCRIPTION: - * - * Returns Bessel function of order one of the argument. - * - * The domain is divided into the intervals [0, 2] and - * (2, infinity). In the first interval a polynomial approximation - * 2 - * (w - r ) x P(w) - * 1 - * 2 - * is used, where w = x and r is the first zero of the function. - * - * In the second interval, the modulus and phase are approximated - * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) - * and Phase(x) = x + 1/x R(1/x^2) - 3pi/4. The function is - * - * j0(x) = Modulus(x) cos( Phase(x) ). - * - * - * - * ACCURACY: - * - * Absolute error: - * arithmetic domain # trials peak rms - * IEEE 0, 2 100000 1.2e-7 2.5e-8 - * IEEE 2, 32 100000 2.0e-7 5.3e-8 - * - * - */ -/* y1.c - * - * Bessel function of second kind of order one - * - * - * - * SYNOPSIS: - * - * double x, y, y1(); - * - * y = y1( x ); - * - * - * - * DESCRIPTION: - * - * Returns Bessel function of the second kind of order one - * of the argument. - * - * The domain is divided into the intervals [0, 2] and - * (2, infinity). In the first interval a rational approximation - * R(x) is employed to compute - * - * 2 - * y0(x) = (w - r ) x R(x^2) + 2/pi (ln(x) j1(x) - 1/x) . - * 1 - * - * Thus a call to j1() is required. - * - * In the second interval, the modulus and phase are approximated - * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) - * and Phase(x) = x + 1/x S(1/x^2) - 3pi/4. Then the function is - * - * y0(x) = Modulus(x) sin( Phase(x) ). - * - * - * - * - * ACCURACY: - * - * Absolute error: - * arithmetic domain # trials peak rms - * IEEE 0, 2 100000 2.2e-7 4.6e-8 - * IEEE 2, 32 100000 1.9e-7 5.3e-8 - * - * (error criterion relative when |y1| > 1). - * - */ - - -/* -Cephes Math Library Release 2.2: June, 1992 -Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier -Direct inquiries to 30 Frost Street, Cambridge, MA 02140 -*/ - - -#include <math.h> - - -static float JP[5] = { --4.878788132172128E-009f, - 6.009061827883699E-007f, --4.541343896997497E-005f, - 1.937383947804541E-003f, --3.405537384615824E-002f -}; - -static float YP[5] = { - 8.061978323326852E-009f, --9.496460629917016E-007f, - 6.719543806674249E-005f, --2.641785726447862E-003f, - 4.202369946500099E-002f -}; - -static float MO1[8] = { - 6.913942741265801E-002f, --2.284801500053359E-001f, - 3.138238455499697E-001f, --2.102302420403875E-001f, - 5.435364690523026E-003f, - 1.493389585089498E-001f, - 4.976029650847191E-006f, - 7.978845453073848E-001f -}; - -static float PH1[8] = { --4.497014141919556E+001f, - 5.073465654089319E+001f, --2.485774108720340E+001f, - 7.222973196770240E+000f, --1.544842782180211E+000f, - 3.503787691653334E-001f, --1.637986776941202E-001f, - 3.749989509080821E-001f -}; - -static float YO1 = 4.66539330185668857532f; -static float Z1 = 1.46819706421238932572E1f; - -static float THPIO4F = 2.35619449019234492885f; /* 3*pi/4 */ -static float TWOOPI = 0.636619772367581343075535f; /* 2/pi */ -extern float PIO4; - - -float polevlf(float, float *, int); -float logf(float), sinf(float), cosf(float), sqrtf(float); - -float j1f( float xx ) -{ -float x, w, z, p, q, xn; - - -x = xx; -if( x < 0 ) - x = -xx; - -if( x <= 2.0f ) - { - z = x * x; - p = (z-Z1) * x * polevlf( z, JP, 4 ); - return( p ); - } - -q = 1.0f/x; -w = sqrtf(q); - -p = w * polevlf( q, MO1, 7); -w = q*q; -xn = q * polevlf( w, PH1, 7) - THPIO4F; -p = p * cosf(xn + x); -return(p); -} - - - - -extern float MAXNUMF; - -float y1f( float xx ) -{ -float x, w, z, p, q, xn; - - -x = xx; -if( x <= 2.0f ) - { - if( x <= 0.0f ) - { - mtherr( "y1f", DOMAIN ); - return( -MAXNUMF ); - } - z = x * x; - w = (z - YO1) * x * polevlf( z, YP, 4 ); - w += TWOOPI * ( j1f(x) * logf(x) - 1.0f/x ); - return( w ); - } - -q = 1.0f/x; -w = sqrtf(q); - -p = w * polevlf( q, MO1, 7); -w = q*q; -xn = q * polevlf( w, PH1, 7) - THPIO4F; -p = p * sinf(xn + x); -return(p); -} |