summaryrefslogtreecommitdiff
path: root/libm/float/incbif.c
diff options
context:
space:
mode:
authorEric Andersen <andersen@codepoet.org>2001-05-10 00:40:28 +0000
committerEric Andersen <andersen@codepoet.org>2001-05-10 00:40:28 +0000
commit1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch)
tree579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/float/incbif.c
parent22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff)
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/float/incbif.c')
-rw-r--r--libm/float/incbif.c197
1 files changed, 197 insertions, 0 deletions
diff --git a/libm/float/incbif.c b/libm/float/incbif.c
new file mode 100644
index 000000000..4d8c0652e
--- /dev/null
+++ b/libm/float/incbif.c
@@ -0,0 +1,197 @@
+/* incbif()
+ *
+ * Inverse of imcomplete beta integral
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * float a, b, x, y, incbif();
+ *
+ * x = incbif( a, b, y );
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Given y, the function finds x such that
+ *
+ * incbet( a, b, x ) = y.
+ *
+ * the routine performs up to 10 Newton iterations to find the
+ * root of incbet(a,b,x) - y = 0.
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * x a,b
+ * arithmetic domain domain # trials peak rms
+ * IEEE 0,1 0,100 5000 2.8e-4 8.3e-6
+ *
+ * Overflow and larger errors may occur for one of a or b near zero
+ * and the other large.
+ */
+
+
+/*
+Cephes Math Library Release 2.2: July, 1992
+Copyright 1984, 1987, 1992 by Stephen L. Moshier
+Direct inquiries to 30 Frost Street, Cambridge, MA 02140
+*/
+
+#include <math.h>
+
+extern float MACHEPF, MINLOGF;
+
+#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
+
+#ifdef ANSIC
+float incbetf(float, float, float);
+float ndtrif(float), expf(float), logf(float), sqrtf(float), lgamf(float);
+#else
+float incbetf();
+float ndtrif(), expf(), logf(), sqrtf(), lgamf();
+#endif
+
+float incbif( float aaa, float bbb, float yyy0 )
+{
+float aa, bb, yy0, a, b, y0;
+float d, y, x, x0, x1, lgm, yp, di;
+int i, rflg;
+
+
+aa = aaa;
+bb = bbb;
+yy0 = yyy0;
+if( yy0 <= 0 )
+ return(0.0);
+if( yy0 >= 1.0 )
+ return(1.0);
+
+/* approximation to inverse function */
+
+yp = -ndtrif(yy0);
+
+if( yy0 > 0.5 )
+ {
+ rflg = 1;
+ a = bb;
+ b = aa;
+ y0 = 1.0 - yy0;
+ yp = -yp;
+ }
+else
+ {
+ rflg = 0;
+ a = aa;
+ b = bb;
+ y0 = yy0;
+ }
+
+
+if( (aa <= 1.0) || (bb <= 1.0) )
+ {
+ y = 0.5 * yp * yp;
+ }
+else
+ {
+ lgm = (yp * yp - 3.0)* 0.16666666666666667;
+ x0 = 2.0/( 1.0/(2.0*a-1.0) + 1.0/(2.0*b-1.0) );
+ y = yp * sqrtf( x0 + lgm ) / x0
+ - ( 1.0/(2.0*b-1.0) - 1.0/(2.0*a-1.0) )
+ * (lgm + 0.833333333333333333 - 2.0/(3.0*x0));
+ y = 2.0 * y;
+ if( y < MINLOGF )
+ {
+ x0 = 1.0;
+ goto under;
+ }
+ }
+
+x = a/( a + b * expf(y) );
+y = incbetf( a, b, x );
+yp = (y - y0)/y0;
+if( fabsf(yp) < 0.1 )
+ goto newt;
+
+/* Resort to interval halving if not close enough */
+x0 = 0.0;
+x1 = 1.0;
+di = 0.5;
+
+for( i=0; i<20; i++ )
+ {
+ if( i != 0 )
+ {
+ x = di * x1 + (1.0-di) * x0;
+ y = incbetf( a, b, x );
+ yp = (y - y0)/y0;
+ if( fabsf(yp) < 1.0e-3 )
+ goto newt;
+ }
+
+ if( y < y0 )
+ {
+ x0 = x;
+ di = 0.5;
+ }
+ else
+ {
+ x1 = x;
+ di *= di;
+ if( di == 0.0 )
+ di = 0.5;
+ }
+ }
+
+if( x0 == 0.0 )
+ {
+under:
+ mtherr( "incbif", UNDERFLOW );
+ goto done;
+ }
+
+newt:
+
+x0 = x;
+lgm = lgamf(a+b) - lgamf(a) - lgamf(b);
+
+for( i=0; i<10; i++ )
+ {
+/* compute the function at this point */
+ if( i != 0 )
+ y = incbetf(a,b,x0);
+/* compute the derivative of the function at this point */
+ d = (a - 1.0) * logf(x0) + (b - 1.0) * logf(1.0-x0) + lgm;
+ if( d < MINLOGF )
+ {
+ x0 = 0.0;
+ goto under;
+ }
+ d = expf(d);
+/* compute the step to the next approximation of x */
+ d = (y - y0)/d;
+ x = x0;
+ x0 = x0 - d;
+ if( x0 <= 0.0 )
+ {
+ x0 = 0.0;
+ goto under;
+ }
+ if( x0 >= 1.0 )
+ {
+ x0 = 1.0;
+ goto under;
+ }
+ if( i < 2 )
+ continue;
+ if( fabsf(d/x0) < 256.0 * MACHEPF )
+ goto done;
+ }
+
+done:
+if( rflg )
+ x0 = 1.0 - x0;
+return( x0 );
+}