diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
commit | 1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch) | |
tree | 579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/float/hyp2f1f.c | |
parent | 22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff) |
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/float/hyp2f1f.c')
-rw-r--r-- | libm/float/hyp2f1f.c | 442 |
1 files changed, 442 insertions, 0 deletions
diff --git a/libm/float/hyp2f1f.c b/libm/float/hyp2f1f.c new file mode 100644 index 000000000..01fe54928 --- /dev/null +++ b/libm/float/hyp2f1f.c @@ -0,0 +1,442 @@ +/* hyp2f1f.c + * + * Gauss hypergeometric function F + * 2 1 + * + * + * SYNOPSIS: + * + * float a, b, c, x, y, hyp2f1f(); + * + * y = hyp2f1f( a, b, c, x ); + * + * + * DESCRIPTION: + * + * + * hyp2f1( a, b, c, x ) = F ( a, b; c; x ) + * 2 1 + * + * inf. + * - a(a+1)...(a+k) b(b+1)...(b+k) k+1 + * = 1 + > ----------------------------- x . + * - c(c+1)...(c+k) (k+1)! + * k = 0 + * + * Cases addressed are + * Tests and escapes for negative integer a, b, or c + * Linear transformation if c - a or c - b negative integer + * Special case c = a or c = b + * Linear transformation for x near +1 + * Transformation for x < -0.5 + * Psi function expansion if x > 0.5 and c - a - b integer + * Conditionally, a recurrence on c to make c-a-b > 0 + * + * |x| > 1 is rejected. + * + * The parameters a, b, c are considered to be integer + * valued if they are within 1.0e-6 of the nearest integer. + * + * ACCURACY: + * + * Relative error (-1 < x < 1): + * arithmetic domain # trials peak rms + * IEEE 0,3 30000 5.8e-4 4.3e-6 + */ + +/* hyp2f1 */ + + +/* +Cephes Math Library Release 2.2: November, 1992 +Copyright 1984, 1987, 1992 by Stephen L. Moshier +Direct inquiries to 30 Frost Street, Cambridge, MA 02140 +*/ + + +#include <math.h> + +#define EPS 1.0e-5 +#define EPS2 1.0e-5 +#define ETHRESH 1.0e-5 + +extern float MAXNUMF, MACHEPF; + +#define fabsf(x) ( (x) < 0 ? -(x) : (x) ) + +#ifdef ANSIC +float powf(float, float); +static float hys2f1f(float, float, float, float, float *); +static float hyt2f1f(float, float, float, float, float *); +float gammaf(float), logf(float), expf(float), psif(float); +float floorf(float); +#else +float powf(), gammaf(), logf(), expf(), psif(); +float floorf(); +static float hyt2f1f(), hys2f1f(); +#endif + +#define roundf(x) (floorf((x)+(float )0.5)) + + + + +float hyp2f1f( float aa, float bb, float cc, float xx ) +{ +float a, b, c, x; +float d, d1, d2, e; +float p, q, r, s, y, ax; +float ia, ib, ic, id, err; +int flag, i, aid; + +a = aa; +b = bb; +c = cc; +x = xx; +err = 0.0; +ax = fabsf(x); +s = 1.0 - x; +flag = 0; +ia = roundf(a); /* nearest integer to a */ +ib = roundf(b); + +if( a <= 0 ) + { + if( fabsf(a-ia) < EPS ) /* a is a negative integer */ + flag |= 1; + } + +if( b <= 0 ) + { + if( fabsf(b-ib) < EPS ) /* b is a negative integer */ + flag |= 2; + } + +if( ax < 1.0 ) + { + if( fabsf(b-c) < EPS ) /* b = c */ + { + y = powf( s, -a ); /* s to the -a power */ + goto hypdon; + } + if( fabsf(a-c) < EPS ) /* a = c */ + { + y = powf( s, -b ); /* s to the -b power */ + goto hypdon; + } + } + + + +if( c <= 0.0 ) + { + ic = roundf(c); /* nearest integer to c */ + if( fabsf(c-ic) < EPS ) /* c is a negative integer */ + { + /* check if termination before explosion */ + if( (flag & 1) && (ia > ic) ) + goto hypok; + if( (flag & 2) && (ib > ic) ) + goto hypok; + goto hypdiv; + } + } + +if( flag ) /* function is a polynomial */ + goto hypok; + +if( ax > 1.0 ) /* series diverges */ + goto hypdiv; + +p = c - a; +ia = roundf(p); +if( (ia <= 0.0) && (fabsf(p-ia) < EPS) ) /* negative int c - a */ + flag |= 4; + +r = c - b; +ib = roundf(r); /* nearest integer to r */ +if( (ib <= 0.0) && (fabsf(r-ib) < EPS) ) /* negative int c - b */ + flag |= 8; + +d = c - a - b; +id = roundf(d); /* nearest integer to d */ +q = fabsf(d-id); + +if( fabsf(ax-1.0) < EPS ) /* |x| == 1.0 */ + { + if( x > 0.0 ) + { + if( flag & 12 ) /* negative int c-a or c-b */ + { + if( d >= 0.0 ) + goto hypf; + else + goto hypdiv; + } + if( d <= 0.0 ) + goto hypdiv; + y = gammaf(c)*gammaf(d)/(gammaf(p)*gammaf(r)); + goto hypdon; + } + + if( d <= -1.0 ) + goto hypdiv; + } + +/* Conditionally make d > 0 by recurrence on c + * AMS55 #15.2.27 + */ +if( d < 0.0 ) + { +/* Try the power series first */ + y = hyt2f1f( a, b, c, x, &err ); + if( err < ETHRESH ) + goto hypdon; +/* Apply the recurrence if power series fails */ + err = 0.0; + aid = 2 - id; + e = c + aid; + d2 = hyp2f1f(a,b,e,x); + d1 = hyp2f1f(a,b,e+1.0,x); + q = a + b + 1.0; + for( i=0; i<aid; i++ ) + { + r = e - 1.0; + y = (e*(r-(2.0*e-q)*x)*d2 + (e-a)*(e-b)*x*d1)/(e*r*s); + e = r; + d1 = d2; + d2 = y; + } + goto hypdon; + } + + +if( flag & 12 ) + goto hypf; /* negative integer c-a or c-b */ + +hypok: +y = hyt2f1f( a, b, c, x, &err ); + +hypdon: +if( err > ETHRESH ) + { + mtherr( "hyp2f1", PLOSS ); +/* printf( "Estimated err = %.2e\n", err );*/ + } +return(y); + +/* The transformation for c-a or c-b negative integer + * AMS55 #15.3.3 + */ +hypf: +y = powf( s, d ) * hys2f1f( c-a, c-b, c, x, &err ); +goto hypdon; + +/* The alarm exit */ +hypdiv: +mtherr( "hyp2f1f", OVERFLOW ); +return( MAXNUMF ); +} + + + + +/* Apply transformations for |x| near 1 + * then call the power series + */ +static float hyt2f1f( float aa, float bb, float cc, float xx, float *loss ) +{ +float a, b, c, x; +float p, q, r, s, t, y, d, err, err1; +float ax, id, d1, d2, e, y1; +int i, aid; + +a = aa; +b = bb; +c = cc; +x = xx; +err = 0.0; +s = 1.0 - x; +if( x < -0.5 ) + { + if( b > a ) + y = powf( s, -a ) * hys2f1f( a, c-b, c, -x/s, &err ); + + else + y = powf( s, -b ) * hys2f1f( c-a, b, c, -x/s, &err ); + + goto done; + } + + + +d = c - a - b; +id = roundf(d); /* nearest integer to d */ + +if( x > 0.8 ) +{ + +if( fabsf(d-id) > EPS2 ) /* test for integer c-a-b */ + { +/* Try the power series first */ + y = hys2f1f( a, b, c, x, &err ); + if( err < ETHRESH ) + goto done; +/* If power series fails, then apply AMS55 #15.3.6 */ + q = hys2f1f( a, b, 1.0-d, s, &err ); + q *= gammaf(d) /(gammaf(c-a) * gammaf(c-b)); + r = powf(s,d) * hys2f1f( c-a, c-b, d+1.0, s, &err1 ); + r *= gammaf(-d)/(gammaf(a) * gammaf(b)); + y = q + r; + + q = fabsf(q); /* estimate cancellation error */ + r = fabsf(r); + if( q > r ) + r = q; + err += err1 + (MACHEPF*r)/y; + + y *= gammaf(c); + goto done; + } +else + { +/* Psi function expansion, AMS55 #15.3.10, #15.3.11, #15.3.12 */ + if( id >= 0.0 ) + { + e = d; + d1 = d; + d2 = 0.0; + aid = id; + } + else + { + e = -d; + d1 = 0.0; + d2 = d; + aid = -id; + } + + ax = logf(s); + + /* sum for t = 0 */ + y = psif(1.0) + psif(1.0+e) - psif(a+d1) - psif(b+d1) - ax; + y /= gammaf(e+1.0); + + p = (a+d1) * (b+d1) * s / gammaf(e+2.0); /* Poch for t=1 */ + t = 1.0; + do + { + r = psif(1.0+t) + psif(1.0+t+e) - psif(a+t+d1) + - psif(b+t+d1) - ax; + q = p * r; + y += q; + p *= s * (a+t+d1) / (t+1.0); + p *= (b+t+d1) / (t+1.0+e); + t += 1.0; + } + while( fabsf(q/y) > EPS ); + + + if( id == 0.0 ) + { + y *= gammaf(c)/(gammaf(a)*gammaf(b)); + goto psidon; + } + + y1 = 1.0; + + if( aid == 1 ) + goto nosum; + + t = 0.0; + p = 1.0; + for( i=1; i<aid; i++ ) + { + r = 1.0-e+t; + p *= s * (a+t+d2) * (b+t+d2) / r; + t += 1.0; + p /= t; + y1 += p; + } + + +nosum: + p = gammaf(c); + y1 *= gammaf(e) * p / (gammaf(a+d1) * gammaf(b+d1)); + y *= p / (gammaf(a+d2) * gammaf(b+d2)); + if( (aid & 1) != 0 ) + y = -y; + + q = powf( s, id ); /* s to the id power */ + if( id > 0.0 ) + y *= q; + else + y1 *= q; + + y += y1; +psidon: + goto done; + } +} + + +/* Use defining power series if no special cases */ +y = hys2f1f( a, b, c, x, &err ); + +done: +*loss = err; +return(y); +} + + + + + +/* Defining power series expansion of Gauss hypergeometric function */ + +static float hys2f1f( float aa, float bb, float cc, float xx, float *loss ) +{ +int i; +float a, b, c, x; +float f, g, h, k, m, s, u, umax; + + +a = aa; +b = bb; +c = cc; +x = xx; +i = 0; +umax = 0.0; +f = a; +g = b; +h = c; +k = 0.0; +s = 1.0; +u = 1.0; + +do + { + if( fabsf(h) < EPS ) + return( MAXNUMF ); + m = k + 1.0; + u = u * ((f+k) * (g+k) * x / ((h+k) * m)); + s += u; + k = fabsf(u); /* remember largest term summed */ + if( k > umax ) + umax = k; + k = m; + if( ++i > 10000 ) /* should never happen */ + { + *loss = 1.0; + return(s); + } + } +while( fabsf(u/s) > MACHEPF ); + +/* return estimated relative error */ +*loss = (MACHEPF*umax)/fabsf(s) + (MACHEPF*i); + +return(s); +} + + |