summaryrefslogtreecommitdiff
path: root/libm/float/acoshf.c
diff options
context:
space:
mode:
authorEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
committerEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
commit7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch)
tree3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/float/acoshf.c
parentc117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff)
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD). -Erik
Diffstat (limited to 'libm/float/acoshf.c')
-rw-r--r--libm/float/acoshf.c97
1 files changed, 0 insertions, 97 deletions
diff --git a/libm/float/acoshf.c b/libm/float/acoshf.c
deleted file mode 100644
index c45206125..000000000
--- a/libm/float/acoshf.c
+++ /dev/null
@@ -1,97 +0,0 @@
-/* acoshf.c
- *
- * Inverse hyperbolic cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, acoshf();
- *
- * y = acoshf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns inverse hyperbolic cosine of argument.
- *
- * If 1 <= x < 1.5, a polynomial approximation
- *
- * sqrt(z) * P(z)
- *
- * where z = x-1, is used. Otherwise,
- *
- * acosh(x) = log( x + sqrt( (x-1)(x+1) ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 1,3 100000 1.8e-7 3.9e-8
- * IEEE 1,2000 100000 3.0e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * acoshf domain |x| < 1 0.0
- *
- */
-
-/* acosh.c */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Single precision inverse hyperbolic cosine
- * test interval: [1.0, 1.5]
- * trials: 10000
- * peak relative error: 1.7e-7
- * rms relative error: 5.0e-8
- *
- * Copyright (C) 1989 by Stephen L. Moshier. All rights reserved.
- */
-#include <math.h>
-extern float LOGE2F;
-
-float sqrtf( float );
-float logf( float );
-
-float acoshf( float xx )
-{
-float x, z;
-
-x = xx;
-if( x < 1.0 )
- {
- mtherr( "acoshf", DOMAIN );
- return(0.0);
- }
-
-if( x > 1500.0 )
- return( logf(x) + LOGE2F );
-
-z = x - 1.0;
-
-if( z < 0.5 )
- {
- z =
- (((( 1.7596881071E-3 * z
- - 7.5272886713E-3) * z
- + 2.6454905019E-2) * z
- - 1.1784741703E-1) * z
- + 1.4142135263E0) * sqrtf( z );
- }
-else
- {
- z = sqrtf( z*(x+1.0) );
- z = logf(x + z);
- }
-return( z );
-}