diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
commit | 1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch) | |
tree | 579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/double/simq.c | |
parent | 22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff) |
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/double/simq.c')
-rw-r--r-- | libm/double/simq.c | 180 |
1 files changed, 180 insertions, 0 deletions
diff --git a/libm/double/simq.c b/libm/double/simq.c new file mode 100644 index 000000000..96d63e521 --- /dev/null +++ b/libm/double/simq.c @@ -0,0 +1,180 @@ +/* simq.c + * + * Solution of simultaneous linear equations AX = B + * by Gaussian elimination with partial pivoting + * + * + * + * SYNOPSIS: + * + * double A[n*n], B[n], X[n]; + * int n, flag; + * int IPS[]; + * int simq(); + * + * ercode = simq( A, B, X, n, flag, IPS ); + * + * + * + * DESCRIPTION: + * + * B, X, IPS are vectors of length n. + * A is an n x n matrix (i.e., a vector of length n*n), + * stored row-wise: that is, A(i,j) = A[ij], + * where ij = i*n + j, which is the transpose of the normal + * column-wise storage. + * + * The contents of matrix A are destroyed. + * + * Set flag=0 to solve. + * Set flag=-1 to do a new back substitution for different B vector + * using the same A matrix previously reduced when flag=0. + * + * The routine returns nonzero on error; messages are printed. + * + * + * ACCURACY: + * + * Depends on the conditioning (range of eigenvalues) of matrix A. + * + * + * REFERENCE: + * + * Computer Solution of Linear Algebraic Systems, + * by George E. Forsythe and Cleve B. Moler; Prentice-Hall, 1967. + * + */ + +/* simq 2 */ + +#include <stdio.h> +#define fabs(x) ((x) < 0 ? -(x) : (x)) + +int simq( A, B, X, n, flag, IPS ) +double A[], B[], X[]; +int n, flag; +int IPS[]; +{ +int i, j, ij, ip, ipj, ipk, ipn; +int idxpiv, iback; +int k, kp, kp1, kpk, kpn; +int nip, nkp, nm1; +double em, q, rownrm, big, size, pivot, sum; + +nm1 = n-1; +if( flag < 0 ) + goto solve; + +/* Initialize IPS and X */ + +ij=0; +for( i=0; i<n; i++ ) + { + IPS[i] = i; + rownrm = 0.0; + for( j=0; j<n; j++ ) + { + q = fabs( A[ij] ); + if( rownrm < q ) + rownrm = q; + ++ij; + } + if( rownrm == 0.0 ) + { + printf("SIMQ ROWNRM=0"); + return(1); + } + X[i] = 1.0/rownrm; + } + +/* simq 3 */ +/* Gaussian elimination with partial pivoting */ + +for( k=0; k<nm1; k++ ) + { + big= 0.0; + idxpiv = 0; + for( i=k; i<n; i++ ) + { + ip = IPS[i]; + ipk = n*ip + k; + size = fabs( A[ipk] ) * X[ip]; + if( size > big ) + { + big = size; + idxpiv = i; + } + } + + if( big == 0.0 ) + { + printf( "SIMQ BIG=0" ); + return(2); + } + if( idxpiv != k ) + { + j = IPS[k]; + IPS[k] = IPS[idxpiv]; + IPS[idxpiv] = j; + } + kp = IPS[k]; + kpk = n*kp + k; + pivot = A[kpk]; + kp1 = k+1; + for( i=kp1; i<n; i++ ) + { + ip = IPS[i]; + ipk = n*ip + k; + em = -A[ipk]/pivot; + A[ipk] = -em; + nip = n*ip; + nkp = n*kp; + for( j=kp1; j<n; j++ ) + { + ipj = nip + j; + A[ipj] = A[ipj] + em * A[nkp + j]; + } + } + } +kpn = n * IPS[n-1] + n - 1; /* last element of IPS[n] th row */ +if( A[kpn] == 0.0 ) + { + printf( "SIMQ A[kpn]=0"); + return(3); + } + +/* simq 4 */ +/* back substitution */ + +solve: +ip = IPS[0]; +X[0] = B[ip]; +for( i=1; i<n; i++ ) + { + ip = IPS[i]; + ipj = n * ip; + sum = 0.0; + for( j=0; j<i; j++ ) + { + sum += A[ipj] * X[j]; + ++ipj; + } + X[i] = B[ip] - sum; + } + +ipn = n * IPS[n-1] + n - 1; +X[n-1] = X[n-1]/A[ipn]; + +for( iback=1; iback<n; iback++ ) + { +/* i goes (n-1),...,1 */ + i = nm1 - iback; + ip = IPS[i]; + nip = n*ip; + sum = 0.0; + for( j=i+1; j<n; j++ ) + sum += A[nip+j] * X[j]; + X[i] = (X[i] - sum)/A[nip+i]; + } +return(0); +} |