diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
commit | 1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch) | |
tree | 579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/double/jn.c | |
parent | 22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff) |
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/double/jn.c')
-rw-r--r-- | libm/double/jn.c | 133 |
1 files changed, 133 insertions, 0 deletions
diff --git a/libm/double/jn.c b/libm/double/jn.c new file mode 100644 index 000000000..ee05395aa --- /dev/null +++ b/libm/double/jn.c @@ -0,0 +1,133 @@ +/* jn.c + * + * Bessel function of integer order + * + * + * + * SYNOPSIS: + * + * int n; + * double x, y, jn(); + * + * y = jn( n, x ); + * + * + * + * DESCRIPTION: + * + * Returns Bessel function of order n, where n is a + * (possibly negative) integer. + * + * The ratio of jn(x) to j0(x) is computed by backward + * recurrence. First the ratio jn/jn-1 is found by a + * continued fraction expansion. Then the recurrence + * relating successive orders is applied until j0 or j1 is + * reached. + * + * If n = 0 or 1 the routine for j0 or j1 is called + * directly. + * + * + * + * ACCURACY: + * + * Absolute error: + * arithmetic range # trials peak rms + * DEC 0, 30 5500 6.9e-17 9.3e-18 + * IEEE 0, 30 5000 4.4e-16 7.9e-17 + * + * + * Not suitable for large n or x. Use jv() instead. + * + */ + +/* jn.c +Cephes Math Library Release 2.8: June, 2000 +Copyright 1984, 1987, 2000 by Stephen L. Moshier +*/ +#include <math.h> +#ifdef ANSIPROT +extern double fabs ( double ); +extern double j0 ( double ); +extern double j1 ( double ); +#else +double fabs(), j0(), j1(); +#endif +extern double MACHEP; + +double jn( n, x ) +int n; +double x; +{ +double pkm2, pkm1, pk, xk, r, ans; +int k, sign; + +if( n < 0 ) + { + n = -n; + if( (n & 1) == 0 ) /* -1**n */ + sign = 1; + else + sign = -1; + } +else + sign = 1; + +if( x < 0.0 ) + { + if( n & 1 ) + sign = -sign; + x = -x; + } + +if( n == 0 ) + return( sign * j0(x) ); +if( n == 1 ) + return( sign * j1(x) ); +if( n == 2 ) + return( sign * (2.0 * j1(x) / x - j0(x)) ); + +if( x < MACHEP ) + return( 0.0 ); + +/* continued fraction */ +#ifdef DEC +k = 56; +#else +k = 53; +#endif + +pk = 2 * (n + k); +ans = pk; +xk = x * x; + +do + { + pk -= 2.0; + ans = pk - (xk/ans); + } +while( --k > 0 ); +ans = x/ans; + +/* backward recurrence */ + +pk = 1.0; +pkm1 = 1.0/ans; +k = n-1; +r = 2 * k; + +do + { + pkm2 = (pkm1 * r - pk * x) / x; + pk = pkm1; + pkm1 = pkm2; + r -= 2.0; + } +while( --k > 0 ); + +if( fabs(pk) > fabs(pkm1) ) + ans = j1(x)/pk; +else + ans = j0(x)/pkm1; +return( sign * ans ); +} |