summaryrefslogtreecommitdiff
path: root/libm/double/expn.c
diff options
context:
space:
mode:
authorEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
committerEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
commit7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch)
tree3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/double/expn.c
parentc117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff)
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD). -Erik
Diffstat (limited to 'libm/double/expn.c')
-rw-r--r--libm/double/expn.c208
1 files changed, 0 insertions, 208 deletions
diff --git a/libm/double/expn.c b/libm/double/expn.c
deleted file mode 100644
index 89b6b139e..000000000
--- a/libm/double/expn.c
+++ /dev/null
@@ -1,208 +0,0 @@
-/* expn.c
- *
- * Exponential integral En
- *
- *
- *
- * SYNOPSIS:
- *
- * int n;
- * double x, y, expn();
- *
- * y = expn( n, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Evaluates the exponential integral
- *
- * inf.
- * -
- * | | -xt
- * | e
- * E (x) = | ---- dt.
- * n | n
- * | | t
- * -
- * 1
- *
- *
- * Both n and x must be nonnegative.
- *
- * The routine employs either a power series, a continued
- * fraction, or an asymptotic formula depending on the
- * relative values of n and x.
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0, 30 5000 2.0e-16 4.6e-17
- * IEEE 0, 30 10000 1.7e-15 3.6e-16
- *
- */
-
-/* expn.c */
-
-/* Cephes Math Library Release 2.8: June, 2000
- Copyright 1985, 2000 by Stephen L. Moshier */
-
-#include <math.h>
-#ifdef ANSIPROT
-extern double pow ( double, double );
-extern double gamma ( double );
-extern double log ( double );
-extern double exp ( double );
-extern double fabs ( double );
-#else
-double pow(), gamma(), log(), exp(), fabs();
-#endif
-#define EUL 0.57721566490153286060
-#define BIG 1.44115188075855872E+17
-extern double MAXNUM, MACHEP, MAXLOG;
-
-double expn( n, x )
-int n;
-double x;
-{
-double ans, r, t, yk, xk;
-double pk, pkm1, pkm2, qk, qkm1, qkm2;
-double psi, z;
-int i, k;
-static double big = BIG;
-
-if( n < 0 )
- goto domerr;
-
-if( x < 0 )
- {
-domerr: mtherr( "expn", DOMAIN );
- return( MAXNUM );
- }
-
-if( x > MAXLOG )
- return( 0.0 );
-
-if( x == 0.0 )
- {
- if( n < 2 )
- {
- mtherr( "expn", SING );
- return( MAXNUM );
- }
- else
- return( 1.0/(n-1.0) );
- }
-
-if( n == 0 )
- return( exp(-x)/x );
-
-/* expn.c */
-/* Expansion for large n */
-
-if( n > 5000 )
- {
- xk = x + n;
- yk = 1.0 / (xk * xk);
- t = n;
- ans = yk * t * (6.0 * x * x - 8.0 * t * x + t * t);
- ans = yk * (ans + t * (t - 2.0 * x));
- ans = yk * (ans + t);
- ans = (ans + 1.0) * exp( -x ) / xk;
- goto done;
- }
-
-if( x > 1.0 )
- goto cfrac;
-
-/* expn.c */
-
-/* Power series expansion */
-
-psi = -EUL - log(x);
-for( i=1; i<n; i++ )
- psi = psi + 1.0/i;
-
-z = -x;
-xk = 0.0;
-yk = 1.0;
-pk = 1.0 - n;
-if( n == 1 )
- ans = 0.0;
-else
- ans = 1.0/pk;
-do
- {
- xk += 1.0;
- yk *= z/xk;
- pk += 1.0;
- if( pk != 0.0 )
- {
- ans += yk/pk;
- }
- if( ans != 0.0 )
- t = fabs(yk/ans);
- else
- t = 1.0;
- }
-while( t > MACHEP );
-k = xk;
-t = n;
-r = n - 1;
-ans = (pow(z, r) * psi / gamma(t)) - ans;
-goto done;
-
-/* expn.c */
-/* continued fraction */
-cfrac:
-k = 1;
-pkm2 = 1.0;
-qkm2 = x;
-pkm1 = 1.0;
-qkm1 = x + n;
-ans = pkm1/qkm1;
-
-do
- {
- k += 1;
- if( k & 1 )
- {
- yk = 1.0;
- xk = n + (k-1)/2;
- }
- else
- {
- yk = x;
- xk = k/2;
- }
- pk = pkm1 * yk + pkm2 * xk;
- qk = qkm1 * yk + qkm2 * xk;
- if( qk != 0 )
- {
- r = pk/qk;
- t = fabs( (ans - r)/r );
- ans = r;
- }
- else
- t = 1.0;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
-if( fabs(pk) > big )
- {
- pkm2 /= big;
- pkm1 /= big;
- qkm2 /= big;
- qkm1 /= big;
- }
- }
-while( t > MACHEP );
-
-ans *= exp( -x );
-
-done:
-return( ans );
-}
-