summaryrefslogtreecommitdiff
path: root/libm/double/exp.c
diff options
context:
space:
mode:
authorEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
committerEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
commit7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch)
tree3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/double/exp.c
parentc117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff)
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD). -Erik
Diffstat (limited to 'libm/double/exp.c')
-rw-r--r--libm/double/exp.c203
1 files changed, 0 insertions, 203 deletions
diff --git a/libm/double/exp.c b/libm/double/exp.c
deleted file mode 100644
index 6d0a8a872..000000000
--- a/libm/double/exp.c
+++ /dev/null
@@ -1,203 +0,0 @@
-/* exp.c
- *
- * Exponential function
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, exp();
- *
- * y = exp( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns e (2.71828...) raised to the x power.
- *
- * Range reduction is accomplished by separating the argument
- * into an integer k and fraction f such that
- *
- * x k f
- * e = 2 e.
- *
- * A Pade' form 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
- * of degree 2/3 is used to approximate exp(f) in the basic
- * interval [-0.5, 0.5].
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC +- 88 50000 2.8e-17 7.0e-18
- * IEEE +- 708 40000 2.0e-16 5.6e-17
- *
- *
- * Error amplification in the exponential function can be
- * a serious matter. The error propagation involves
- * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
- * which shows that a 1 lsb error in representing X produces
- * a relative error of X times 1 lsb in the function.
- * While the routine gives an accurate result for arguments
- * that are exactly represented by a double precision
- * computer number, the result contains amplified roundoff
- * error for large arguments not exactly represented.
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * exp underflow x < MINLOG 0.0
- * exp overflow x > MAXLOG INFINITY
- *
- */
-
-/*
-Cephes Math Library Release 2.8: June, 2000
-Copyright 1984, 1995, 2000 by Stephen L. Moshier
-*/
-
-
-/* Exponential function */
-
-#include <math.h>
-
-#ifdef UNK
-
-static double P[] = {
- 1.26177193074810590878E-4,
- 3.02994407707441961300E-2,
- 9.99999999999999999910E-1,
-};
-static double Q[] = {
- 3.00198505138664455042E-6,
- 2.52448340349684104192E-3,
- 2.27265548208155028766E-1,
- 2.00000000000000000009E0,
-};
-static double C1 = 6.93145751953125E-1;
-static double C2 = 1.42860682030941723212E-6;
-#endif
-
-#ifdef DEC
-static unsigned short P[] = {
-0035004,0047156,0127442,0057502,
-0036770,0033210,0063121,0061764,
-0040200,0000000,0000000,0000000,
-};
-static unsigned short Q[] = {
-0033511,0072665,0160662,0176377,
-0036045,0070715,0124105,0132777,
-0037550,0134114,0142077,0001637,
-0040400,0000000,0000000,0000000,
-};
-static unsigned short sc1[] = {0040061,0071000,0000000,0000000};
-#define C1 (*(double *)sc1)
-static unsigned short sc2[] = {0033277,0137216,0075715,0057117};
-#define C2 (*(double *)sc2)
-#endif
-
-#ifdef IBMPC
-static unsigned short P[] = {
-0x4be8,0xd5e4,0x89cd,0x3f20,
-0x2c7e,0x0cca,0x06d1,0x3f9f,
-0x0000,0x0000,0x0000,0x3ff0,
-};
-static unsigned short Q[] = {
-0x5fa0,0xbc36,0x2eb6,0x3ec9,
-0xb6c0,0xb508,0xae39,0x3f64,
-0xe074,0x9887,0x1709,0x3fcd,
-0x0000,0x0000,0x0000,0x4000,
-};
-static unsigned short sc1[] = {0x0000,0x0000,0x2e40,0x3fe6};
-#define C1 (*(double *)sc1)
-static unsigned short sc2[] = {0xabca,0xcf79,0xf7d1,0x3eb7};
-#define C2 (*(double *)sc2)
-#endif
-
-#ifdef MIEEE
-static unsigned short P[] = {
-0x3f20,0x89cd,0xd5e4,0x4be8,
-0x3f9f,0x06d1,0x0cca,0x2c7e,
-0x3ff0,0x0000,0x0000,0x0000,
-};
-static unsigned short Q[] = {
-0x3ec9,0x2eb6,0xbc36,0x5fa0,
-0x3f64,0xae39,0xb508,0xb6c0,
-0x3fcd,0x1709,0x9887,0xe074,
-0x4000,0x0000,0x0000,0x0000,
-};
-static unsigned short sc1[] = {0x3fe6,0x2e40,0x0000,0x0000};
-#define C1 (*(double *)sc1)
-static unsigned short sc2[] = {0x3eb7,0xf7d1,0xcf79,0xabca};
-#define C2 (*(double *)sc2)
-#endif
-
-#ifdef ANSIPROT
-extern double polevl ( double, void *, int );
-extern double p1evl ( double, void *, int );
-extern double floor ( double );
-extern double ldexp ( double, int );
-extern int isnan ( double );
-extern int isfinite ( double );
-#else
-double polevl(), p1evl(), floor(), ldexp();
-int isnan(), isfinite();
-#endif
-extern double LOGE2, LOG2E, MAXLOG, MINLOG, MAXNUM;
-#ifdef INFINITIES
-extern double INFINITY;
-#endif
-
-double exp(x)
-double x;
-{
-double px, xx;
-int n;
-
-#ifdef NANS
-if( isnan(x) )
- return(x);
-#endif
-if( x > MAXLOG)
- {
-#ifdef INFINITIES
- return( INFINITY );
-#else
- mtherr( "exp", OVERFLOW );
- return( MAXNUM );
-#endif
- }
-
-if( x < MINLOG )
- {
-#ifndef INFINITIES
- mtherr( "exp", UNDERFLOW );
-#endif
- return(0.0);
- }
-
-/* Express e**x = e**g 2**n
- * = e**g e**( n loge(2) )
- * = e**( g + n loge(2) )
- */
-px = floor( LOG2E * x + 0.5 ); /* floor() truncates toward -infinity. */
-n = px;
-x -= px * C1;
-x -= px * C2;
-
-/* rational approximation for exponential
- * of the fractional part:
- * e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
- */
-xx = x * x;
-px = x * polevl( xx, P, 2 );
-x = px/( polevl( xx, Q, 3 ) - px );
-x = 1.0 + 2.0 * x;
-
-/* multiply by power of 2 */
-x = ldexp( x, n );
-return(x);
-}