diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
commit | 7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch) | |
tree | 3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/double/clog.c | |
parent | c117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff) |
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD).
-Erik
Diffstat (limited to 'libm/double/clog.c')
-rw-r--r-- | libm/double/clog.c | 1043 |
1 files changed, 0 insertions, 1043 deletions
diff --git a/libm/double/clog.c b/libm/double/clog.c deleted file mode 100644 index 70a318a50..000000000 --- a/libm/double/clog.c +++ /dev/null @@ -1,1043 +0,0 @@ -/* clog.c - * - * Complex natural logarithm - * - * - * - * SYNOPSIS: - * - * void clog(); - * cmplx z, w; - * - * clog( &z, &w ); - * - * - * - * DESCRIPTION: - * - * Returns complex logarithm to the base e (2.718...) of - * the complex argument x. - * - * If z = x + iy, r = sqrt( x**2 + y**2 ), - * then - * w = log(r) + i arctan(y/x). - * - * The arctangent ranges from -PI to +PI. - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC -10,+10 7000 8.5e-17 1.9e-17 - * IEEE -10,+10 30000 5.0e-15 1.1e-16 - * - * Larger relative error can be observed for z near 1 +i0. - * In IEEE arithmetic the peak absolute error is 5.2e-16, rms - * absolute error 1.0e-16. - */ - -/* -Cephes Math Library Release 2.8: June, 2000 -Copyright 1984, 1995, 2000 by Stephen L. Moshier -*/ -#include <math.h> -#ifdef ANSIPROT -static void cchsh ( double x, double *c, double *s ); -static double redupi ( double x ); -static double ctans ( cmplx *z ); -/* These are supposed to be in some standard place. */ -double fabs (double); -double sqrt (double); -double pow (double, double); -double log (double); -double exp (double); -double atan2 (double, double); -double cosh (double); -double sinh (double); -double asin (double); -double sin (double); -double cos (double); -double cabs (cmplx *); -void cadd ( cmplx *, cmplx *, cmplx * ); -void cmul ( cmplx *, cmplx *, cmplx * ); -void csqrt ( cmplx *, cmplx * ); -static void cchsh ( double, double *, double * ); -static double redupi ( double ); -static double ctans ( cmplx * ); -void clog ( cmplx *, cmplx * ); -void casin ( cmplx *, cmplx * ); -void cacos ( cmplx *, cmplx * ); -void catan ( cmplx *, cmplx * ); -#else -static void cchsh(); -static double redupi(); -static double ctans(); -double cabs(), fabs(), sqrt(), pow(); -double log(), exp(), atan2(), cosh(), sinh(); -double asin(), sin(), cos(); -void cadd(), cmul(), csqrt(); -void clog(), casin(), cacos(), catan(); -#endif - - -extern double MAXNUM, MACHEP, PI, PIO2; - -void clog( z, w ) -register cmplx *z, *w; -{ -double p, rr; - -/*rr = sqrt( z->r * z->r + z->i * z->i );*/ -rr = cabs(z); -p = log(rr); -#if ANSIC -rr = atan2( z->i, z->r ); -#else -rr = atan2( z->r, z->i ); -if( rr > PI ) - rr -= PI + PI; -#endif -w->i = rr; -w->r = p; -} -/* cexp() - * - * Complex exponential function - * - * - * - * SYNOPSIS: - * - * void cexp(); - * cmplx z, w; - * - * cexp( &z, &w ); - * - * - * - * DESCRIPTION: - * - * Returns the exponential of the complex argument z - * into the complex result w. - * - * If - * z = x + iy, - * r = exp(x), - * - * then - * - * w = r cos y + i r sin y. - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC -10,+10 8700 3.7e-17 1.1e-17 - * IEEE -10,+10 30000 3.0e-16 8.7e-17 - * - */ - -void cexp( z, w ) -register cmplx *z, *w; -{ -double r; - -r = exp( z->r ); -w->r = r * cos( z->i ); -w->i = r * sin( z->i ); -} -/* csin() - * - * Complex circular sine - * - * - * - * SYNOPSIS: - * - * void csin(); - * cmplx z, w; - * - * csin( &z, &w ); - * - * - * - * DESCRIPTION: - * - * If - * z = x + iy, - * - * then - * - * w = sin x cosh y + i cos x sinh y. - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC -10,+10 8400 5.3e-17 1.3e-17 - * IEEE -10,+10 30000 3.8e-16 1.0e-16 - * Also tested by csin(casin(z)) = z. - * - */ - -void csin( z, w ) -register cmplx *z, *w; -{ -double ch, sh; - -cchsh( z->i, &ch, &sh ); -w->r = sin( z->r ) * ch; -w->i = cos( z->r ) * sh; -} - - - -/* calculate cosh and sinh */ - -static void cchsh( x, c, s ) -double x, *c, *s; -{ -double e, ei; - -if( fabs(x) <= 0.5 ) - { - *c = cosh(x); - *s = sinh(x); - } -else - { - e = exp(x); - ei = 0.5/e; - e = 0.5 * e; - *s = e - ei; - *c = e + ei; - } -} - -/* ccos() - * - * Complex circular cosine - * - * - * - * SYNOPSIS: - * - * void ccos(); - * cmplx z, w; - * - * ccos( &z, &w ); - * - * - * - * DESCRIPTION: - * - * If - * z = x + iy, - * - * then - * - * w = cos x cosh y - i sin x sinh y. - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC -10,+10 8400 4.5e-17 1.3e-17 - * IEEE -10,+10 30000 3.8e-16 1.0e-16 - */ - -void ccos( z, w ) -register cmplx *z, *w; -{ -double ch, sh; - -cchsh( z->i, &ch, &sh ); -w->r = cos( z->r ) * ch; -w->i = -sin( z->r ) * sh; -} -/* ctan() - * - * Complex circular tangent - * - * - * - * SYNOPSIS: - * - * void ctan(); - * cmplx z, w; - * - * ctan( &z, &w ); - * - * - * - * DESCRIPTION: - * - * If - * z = x + iy, - * - * then - * - * sin 2x + i sinh 2y - * w = --------------------. - * cos 2x + cosh 2y - * - * On the real axis the denominator is zero at odd multiples - * of PI/2. The denominator is evaluated by its Taylor - * series near these points. - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC -10,+10 5200 7.1e-17 1.6e-17 - * IEEE -10,+10 30000 7.2e-16 1.2e-16 - * Also tested by ctan * ccot = 1 and catan(ctan(z)) = z. - */ - -void ctan( z, w ) -register cmplx *z, *w; -{ -double d; - -d = cos( 2.0 * z->r ) + cosh( 2.0 * z->i ); - -if( fabs(d) < 0.25 ) - d = ctans(z); - -if( d == 0.0 ) - { - mtherr( "ctan", OVERFLOW ); - w->r = MAXNUM; - w->i = MAXNUM; - return; - } - -w->r = sin( 2.0 * z->r ) / d; -w->i = sinh( 2.0 * z->i ) / d; -} -/* ccot() - * - * Complex circular cotangent - * - * - * - * SYNOPSIS: - * - * void ccot(); - * cmplx z, w; - * - * ccot( &z, &w ); - * - * - * - * DESCRIPTION: - * - * If - * z = x + iy, - * - * then - * - * sin 2x - i sinh 2y - * w = --------------------. - * cosh 2y - cos 2x - * - * On the real axis, the denominator has zeros at even - * multiples of PI/2. Near these points it is evaluated - * by a Taylor series. - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC -10,+10 3000 6.5e-17 1.6e-17 - * IEEE -10,+10 30000 9.2e-16 1.2e-16 - * Also tested by ctan * ccot = 1 + i0. - */ - -void ccot( z, w ) -register cmplx *z, *w; -{ -double d; - -d = cosh(2.0 * z->i) - cos(2.0 * z->r); - -if( fabs(d) < 0.25 ) - d = ctans(z); - -if( d == 0.0 ) - { - mtherr( "ccot", OVERFLOW ); - w->r = MAXNUM; - w->i = MAXNUM; - return; - } - -w->r = sin( 2.0 * z->r ) / d; -w->i = -sinh( 2.0 * z->i ) / d; -} - -/* Program to subtract nearest integer multiple of PI */ -/* extended precision value of PI: */ -#ifdef UNK -static double DP1 = 3.14159265160560607910E0; -static double DP2 = 1.98418714791870343106E-9; -static double DP3 = 1.14423774522196636802E-17; -#endif - -#ifdef DEC -static unsigned short P1[] = {0040511,0007732,0120000,0000000,}; -static unsigned short P2[] = {0031010,0055060,0100000,0000000,}; -static unsigned short P3[] = {0022123,0011431,0105056,0001560,}; -#define DP1 *(double *)P1 -#define DP2 *(double *)P2 -#define DP3 *(double *)P3 -#endif - -#ifdef IBMPC -static unsigned short P1[] = {0x0000,0x5400,0x21fb,0x4009}; -static unsigned short P2[] = {0x0000,0x1000,0x0b46,0x3e21}; -static unsigned short P3[] = {0xc06e,0x3145,0x6263,0x3c6a}; -#define DP1 *(double *)P1 -#define DP2 *(double *)P2 -#define DP3 *(double *)P3 -#endif - -#ifdef MIEEE -static unsigned short P1[] = { -0x4009,0x21fb,0x5400,0x0000 -}; -static unsigned short P2[] = { -0x3e21,0x0b46,0x1000,0x0000 -}; -static unsigned short P3[] = { -0x3c6a,0x6263,0x3145,0xc06e -}; -#define DP1 *(double *)P1 -#define DP2 *(double *)P2 -#define DP3 *(double *)P3 -#endif - -static double redupi(x) -double x; -{ -double t; -long i; - -t = x/PI; -if( t >= 0.0 ) - t += 0.5; -else - t -= 0.5; - -i = t; /* the multiple */ -t = i; -t = ((x - t * DP1) - t * DP2) - t * DP3; -return(t); -} - -/* Taylor series expansion for cosh(2y) - cos(2x) */ - -static double ctans(z) -cmplx *z; -{ -double f, x, x2, y, y2, rn, t; -double d; - -x = fabs( 2.0 * z->r ); -y = fabs( 2.0 * z->i ); - -x = redupi(x); - -x = x * x; -y = y * y; -x2 = 1.0; -y2 = 1.0; -f = 1.0; -rn = 0.0; -d = 0.0; -do - { - rn += 1.0; - f *= rn; - rn += 1.0; - f *= rn; - x2 *= x; - y2 *= y; - t = y2 + x2; - t /= f; - d += t; - - rn += 1.0; - f *= rn; - rn += 1.0; - f *= rn; - x2 *= x; - y2 *= y; - t = y2 - x2; - t /= f; - d += t; - } -while( fabs(t/d) > MACHEP ); -return(d); -} -/* casin() - * - * Complex circular arc sine - * - * - * - * SYNOPSIS: - * - * void casin(); - * cmplx z, w; - * - * casin( &z, &w ); - * - * - * - * DESCRIPTION: - * - * Inverse complex sine: - * - * 2 - * w = -i clog( iz + csqrt( 1 - z ) ). - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC -10,+10 10100 2.1e-15 3.4e-16 - * IEEE -10,+10 30000 2.2e-14 2.7e-15 - * Larger relative error can be observed for z near zero. - * Also tested by csin(casin(z)) = z. - */ - -void casin( z, w ) -cmplx *z, *w; -{ -static cmplx ca, ct, zz, z2; -double x, y; - -x = z->r; -y = z->i; - -if( y == 0.0 ) - { - if( fabs(x) > 1.0 ) - { - w->r = PIO2; - w->i = 0.0; - mtherr( "casin", DOMAIN ); - } - else - { - w->r = asin(x); - w->i = 0.0; - } - return; - } - -/* Power series expansion */ -/* -b = cabs(z); -if( b < 0.125 ) -{ -z2.r = (x - y) * (x + y); -z2.i = 2.0 * x * y; - -cn = 1.0; -n = 1.0; -ca.r = x; -ca.i = y; -sum.r = x; -sum.i = y; -do - { - ct.r = z2.r * ca.r - z2.i * ca.i; - ct.i = z2.r * ca.i + z2.i * ca.r; - ca.r = ct.r; - ca.i = ct.i; - - cn *= n; - n += 1.0; - cn /= n; - n += 1.0; - b = cn/n; - - ct.r *= b; - ct.i *= b; - sum.r += ct.r; - sum.i += ct.i; - b = fabs(ct.r) + fabs(ct.i); - } -while( b > MACHEP ); -w->r = sum.r; -w->i = sum.i; -return; -} -*/ - - -ca.r = x; -ca.i = y; - -ct.r = -ca.i; /* iz */ -ct.i = ca.r; - - /* sqrt( 1 - z*z) */ -/* cmul( &ca, &ca, &zz ) */ -zz.r = (ca.r - ca.i) * (ca.r + ca.i); /*x * x - y * y */ -zz.i = 2.0 * ca.r * ca.i; - -zz.r = 1.0 - zz.r; -zz.i = -zz.i; -csqrt( &zz, &z2 ); - -cadd( &z2, &ct, &zz ); -clog( &zz, &zz ); -w->r = zz.i; /* mult by 1/i = -i */ -w->i = -zz.r; -return; -} -/* cacos() - * - * Complex circular arc cosine - * - * - * - * SYNOPSIS: - * - * void cacos(); - * cmplx z, w; - * - * cacos( &z, &w ); - * - * - * - * DESCRIPTION: - * - * - * w = arccos z = PI/2 - arcsin z. - * - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC -10,+10 5200 1.6e-15 2.8e-16 - * IEEE -10,+10 30000 1.8e-14 2.2e-15 - */ - -void cacos( z, w ) -cmplx *z, *w; -{ - -casin( z, w ); -w->r = PIO2 - w->r; -w->i = -w->i; -} -/* catan() - * - * Complex circular arc tangent - * - * - * - * SYNOPSIS: - * - * void catan(); - * cmplx z, w; - * - * catan( &z, &w ); - * - * - * - * DESCRIPTION: - * - * If - * z = x + iy, - * - * then - * 1 ( 2x ) - * Re w = - arctan(-----------) + k PI - * 2 ( 2 2) - * (1 - x - y ) - * - * ( 2 2) - * 1 (x + (y+1) ) - * Im w = - log(------------) - * 4 ( 2 2) - * (x + (y-1) ) - * - * Where k is an arbitrary integer. - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC -10,+10 5900 1.3e-16 7.8e-18 - * IEEE -10,+10 30000 2.3e-15 8.5e-17 - * The check catan( ctan(z) ) = z, with |x| and |y| < PI/2, - * had peak relative error 1.5e-16, rms relative error - * 2.9e-17. See also clog(). - */ - -void catan( z, w ) -cmplx *z, *w; -{ -double a, t, x, x2, y; - -x = z->r; -y = z->i; - -if( (x == 0.0) && (y > 1.0) ) - goto ovrf; - -x2 = x * x; -a = 1.0 - x2 - (y * y); -if( a == 0.0 ) - goto ovrf; - -#if ANSIC -t = atan2( 2.0 * x, a )/2.0; -#else -t = atan2( a, 2.0 * x )/2.0; -#endif -w->r = redupi( t ); - -t = y - 1.0; -a = x2 + (t * t); -if( a == 0.0 ) - goto ovrf; - -t = y + 1.0; -a = (x2 + (t * t))/a; -w->i = log(a)/4.0; -return; - -ovrf: -mtherr( "catan", OVERFLOW ); -w->r = MAXNUM; -w->i = MAXNUM; -} - - -/* csinh - * - * Complex hyperbolic sine - * - * - * - * SYNOPSIS: - * - * void csinh(); - * cmplx z, w; - * - * csinh( &z, &w ); - * - * - * DESCRIPTION: - * - * csinh z = (cexp(z) - cexp(-z))/2 - * = sinh x * cos y + i cosh x * sin y . - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10,+10 30000 3.1e-16 8.2e-17 - * - */ - -void -csinh (z, w) - cmplx *z, *w; -{ - double x, y; - - x = z->r; - y = z->i; - w->r = sinh (x) * cos (y); - w->i = cosh (x) * sin (y); -} - - -/* casinh - * - * Complex inverse hyperbolic sine - * - * - * - * SYNOPSIS: - * - * void casinh(); - * cmplx z, w; - * - * casinh (&z, &w); - * - * - * - * DESCRIPTION: - * - * casinh z = -i casin iz . - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10,+10 30000 1.8e-14 2.6e-15 - * - */ - -void -casinh (z, w) - cmplx *z, *w; -{ - cmplx u; - - u.r = 0.0; - u.i = 1.0; - cmul( z, &u, &u ); - casin( &u, w ); - u.r = 0.0; - u.i = -1.0; - cmul( &u, w, w ); -} - -/* ccosh - * - * Complex hyperbolic cosine - * - * - * - * SYNOPSIS: - * - * void ccosh(); - * cmplx z, w; - * - * ccosh (&z, &w); - * - * - * - * DESCRIPTION: - * - * ccosh(z) = cosh x cos y + i sinh x sin y . - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10,+10 30000 2.9e-16 8.1e-17 - * - */ - -void -ccosh (z, w) - cmplx *z, *w; -{ - double x, y; - - x = z->r; - y = z->i; - w->r = cosh (x) * cos (y); - w->i = sinh (x) * sin (y); -} - - -/* cacosh - * - * Complex inverse hyperbolic cosine - * - * - * - * SYNOPSIS: - * - * void cacosh(); - * cmplx z, w; - * - * cacosh (&z, &w); - * - * - * - * DESCRIPTION: - * - * acosh z = i acos z . - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10,+10 30000 1.6e-14 2.1e-15 - * - */ - -void -cacosh (z, w) - cmplx *z, *w; -{ - cmplx u; - - cacos( z, w ); - u.r = 0.0; - u.i = 1.0; - cmul( &u, w, w ); -} - - -/* ctanh - * - * Complex hyperbolic tangent - * - * - * - * SYNOPSIS: - * - * void ctanh(); - * cmplx z, w; - * - * ctanh (&z, &w); - * - * - * - * DESCRIPTION: - * - * tanh z = (sinh 2x + i sin 2y) / (cosh 2x + cos 2y) . - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10,+10 30000 1.7e-14 2.4e-16 - * - */ - -/* 5.253E-02,1.550E+00 1.643E+01,6.553E+00 1.729E-14 21355 */ - -void -ctanh (z, w) - cmplx *z, *w; -{ - double x, y, d; - - x = z->r; - y = z->i; - d = cosh (2.0 * x) + cos (2.0 * y); - w->r = sinh (2.0 * x) / d; - w->i = sin (2.0 * y) / d; - return; -} - - -/* catanh - * - * Complex inverse hyperbolic tangent - * - * - * - * SYNOPSIS: - * - * void catanh(); - * cmplx z, w; - * - * catanh (&z, &w); - * - * - * - * DESCRIPTION: - * - * Inverse tanh, equal to -i catan (iz); - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10,+10 30000 2.3e-16 6.2e-17 - * - */ - -void -catanh (z, w) - cmplx *z, *w; -{ - cmplx u; - - u.r = 0.0; - u.i = 1.0; - cmul (z, &u, &u); /* i z */ - catan (&u, w); - u.r = 0.0; - u.i = -1.0; - cmul (&u, w, w); /* -i catan iz */ - return; -} - - -/* cpow - * - * Complex power function - * - * - * - * SYNOPSIS: - * - * void cpow(); - * cmplx a, z, w; - * - * cpow (&a, &z, &w); - * - * - * - * DESCRIPTION: - * - * Raises complex A to the complex Zth power. - * Definition is per AMS55 # 4.2.8, - * analytically equivalent to cpow(a,z) = cexp(z clog(a)). - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10,+10 30000 9.4e-15 1.5e-15 - * - */ - - -void -cpow (a, z, w) - cmplx *a, *z, *w; -{ - double x, y, r, theta, absa, arga; - - x = z->r; - y = z->i; - absa = cabs (a); - if (absa == 0.0) - { - w->r = 0.0; - w->i = 0.0; - return; - } - arga = atan2 (a->i, a->r); - r = pow (absa, x); - theta = x * arga; - if (y != 0.0) - { - r = r * exp (-y * arga); - theta = theta + y * log (absa); - } - w->r = r * cos (theta); - w->i = r * sin (theta); - return; -} |