diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
commit | 1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch) | |
tree | 579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/double/cbrt.c | |
parent | 22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff) |
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/double/cbrt.c')
-rw-r--r-- | libm/double/cbrt.c | 142 |
1 files changed, 142 insertions, 0 deletions
diff --git a/libm/double/cbrt.c b/libm/double/cbrt.c new file mode 100644 index 000000000..026207275 --- /dev/null +++ b/libm/double/cbrt.c @@ -0,0 +1,142 @@ +/* cbrt.c + * + * Cube root + * + * + * + * SYNOPSIS: + * + * double x, y, cbrt(); + * + * y = cbrt( x ); + * + * + * + * DESCRIPTION: + * + * Returns the cube root of the argument, which may be negative. + * + * Range reduction involves determining the power of 2 of + * the argument. A polynomial of degree 2 applied to the + * mantissa, and multiplication by the cube root of 1, 2, or 4 + * approximates the root to within about 0.1%. Then Newton's + * iteration is used three times to converge to an accurate + * result. + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC -10,10 200000 1.8e-17 6.2e-18 + * IEEE 0,1e308 30000 1.5e-16 5.0e-17 + * + */ +/* cbrt.c */ + +/* +Cephes Math Library Release 2.8: June, 2000 +Copyright 1984, 1991, 2000 by Stephen L. Moshier +*/ + + +#include <math.h> + +static double CBRT2 = 1.2599210498948731647672; +static double CBRT4 = 1.5874010519681994747517; +static double CBRT2I = 0.79370052598409973737585; +static double CBRT4I = 0.62996052494743658238361; + +#ifdef ANSIPROT +extern double frexp ( double, int * ); +extern double ldexp ( double, int ); +extern int isnan ( double ); +extern int isfinite ( double ); +#else +double frexp(), ldexp(); +int isnan(), isfinite(); +#endif + +double cbrt(x) +double x; +{ +int e, rem, sign; +double z; + +#ifdef NANS +if( isnan(x) ) + return x; +#endif +#ifdef INFINITIES +if( !isfinite(x) ) + return x; +#endif +if( x == 0 ) + return( x ); +if( x > 0 ) + sign = 1; +else + { + sign = -1; + x = -x; + } + +z = x; +/* extract power of 2, leaving + * mantissa between 0.5 and 1 + */ +x = frexp( x, &e ); + +/* Approximate cube root of number between .5 and 1, + * peak relative error = 9.2e-6 + */ +x = (((-1.3466110473359520655053e-1 * x + + 5.4664601366395524503440e-1) * x + - 9.5438224771509446525043e-1) * x + + 1.1399983354717293273738e0 ) * x + + 4.0238979564544752126924e-1; + +/* exponent divided by 3 */ +if( e >= 0 ) + { + rem = e; + e /= 3; + rem -= 3*e; + if( rem == 1 ) + x *= CBRT2; + else if( rem == 2 ) + x *= CBRT4; + } + + +/* argument less than 1 */ + +else + { + e = -e; + rem = e; + e /= 3; + rem -= 3*e; + if( rem == 1 ) + x *= CBRT2I; + else if( rem == 2 ) + x *= CBRT4I; + e = -e; + } + +/* multiply by power of 2 */ +x = ldexp( x, e ); + +/* Newton iteration */ +x -= ( x - (z/(x*x)) )*0.33333333333333333333; +#ifdef DEC +x -= ( x - (z/(x*x)) )/3.0; +#else +x -= ( x - (z/(x*x)) )*0.33333333333333333333; +#endif + +if( sign < 0 ) + x = -x; +return(x); +} |