summaryrefslogtreecommitdiff
path: root/tools/lzma-loader/.svn/text-base/LzmaDecode.c.svn-base
blob: 951700bddfb24e69767f4d1ad284996ce6dfb900 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
/*
  LzmaDecode.c
  LZMA Decoder
  
  LZMA SDK 4.05 Copyright (c) 1999-2004 Igor Pavlov (2004-08-25)
  http://www.7-zip.org/

  LZMA SDK is licensed under two licenses:
  1) GNU Lesser General Public License (GNU LGPL)
  2) Common Public License (CPL)
  It means that you can select one of these two licenses and 
  follow rules of that license.

  SPECIAL EXCEPTION:
  Igor Pavlov, as the author of this code, expressly permits you to 
  statically or dynamically link your code (or bind by name) to the 
  interfaces of this file without subjecting your linked code to the 
  terms of the CPL or GNU LGPL. Any modifications or additions 
  to this file, however, are subject to the LGPL or CPL terms.
*/

#include "LzmaDecode.h"

#ifndef Byte
#define Byte unsigned char
#endif

#define kNumTopBits 24
#define kTopValue ((UInt32)1 << kNumTopBits)

#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5

typedef struct _CRangeDecoder
{
  Byte *Buffer;
  Byte *BufferLim;
  UInt32 Range;
  UInt32 Code;
  #ifdef _LZMA_IN_CB
  ILzmaInCallback *InCallback;
  int Result;
  #endif
  int ExtraBytes;
} CRangeDecoder;

Byte RangeDecoderReadByte(CRangeDecoder *rd)
{
  if (rd->Buffer == rd->BufferLim)
  {
    #ifdef _LZMA_IN_CB
    UInt32 size;
    rd->Result = rd->InCallback->Read(rd->InCallback, &rd->Buffer, &size);
    rd->BufferLim = rd->Buffer + size;
    if (size == 0)
    #endif
    {
      rd->ExtraBytes = 1;
      return 0xFF;
    }
  }
  return (*rd->Buffer++);
}

/* #define ReadByte (*rd->Buffer++) */
#define ReadByte (RangeDecoderReadByte(rd))

void RangeDecoderInit(CRangeDecoder *rd,
  #ifdef _LZMA_IN_CB
    ILzmaInCallback *inCallback
  #else
    Byte *stream, UInt32 bufferSize
  #endif
    )
{
  int i;
  #ifdef _LZMA_IN_CB
  rd->InCallback = inCallback;
  rd->Buffer = rd->BufferLim = 0;
  #else
  rd->Buffer = stream;
  rd->BufferLim = stream + bufferSize;
  #endif
  rd->ExtraBytes = 0;
  rd->Code = 0;
  rd->Range = (0xFFFFFFFF);
  for(i = 0; i < 5; i++)
    rd->Code = (rd->Code << 8) | ReadByte;
}

#define RC_INIT_VAR UInt32 range = rd->Range; UInt32 code = rd->Code;        
#define RC_FLUSH_VAR rd->Range = range; rd->Code = code;
#define RC_NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | ReadByte; }

UInt32 RangeDecoderDecodeDirectBits(CRangeDecoder *rd, int numTotalBits)
{
  RC_INIT_VAR
  UInt32 result = 0;
  int i;
  for (i = numTotalBits; i > 0; i--)
  {
    /* UInt32 t; */
    range >>= 1;

    result <<= 1;
    if (code >= range)
    {
      code -= range;
      result |= 1;
    }
    /*
    t = (code - range) >> 31;
    t &= 1;
    code -= range & (t - 1);
    result = (result + result) | (1 - t);
    */
    RC_NORMALIZE
  }
  RC_FLUSH_VAR
  return result;
}

int RangeDecoderBitDecode(CProb *prob, CRangeDecoder *rd)
{
  UInt32 bound = (rd->Range >> kNumBitModelTotalBits) * *prob;
  if (rd->Code < bound)
  {
    rd->Range = bound;
    *prob += (kBitModelTotal - *prob) >> kNumMoveBits;
    if (rd->Range < kTopValue)
    {
      rd->Code = (rd->Code << 8) | ReadByte;
      rd->Range <<= 8;
    }
    return 0;
  }
  else
  {
    rd->Range -= bound;
    rd->Code -= bound;
    *prob -= (*prob) >> kNumMoveBits;
    if (rd->Range < kTopValue)
    {
      rd->Code = (rd->Code << 8) | ReadByte;
      rd->Range <<= 8;
    }
    return 1;
  }
}

#define RC_GET_BIT2(prob, mi, A0, A1) \
  UInt32 bound = (range >> kNumBitModelTotalBits) * *prob; \
  if (code < bound) \
    { A0; range = bound; *prob += (kBitModelTotal - *prob) >> kNumMoveBits; mi <<= 1; } \
  else \
    { A1; range -= bound; code -= bound; *prob -= (*prob) >> kNumMoveBits; mi = (mi + mi) + 1; } \
  RC_NORMALIZE

#define RC_GET_BIT(prob, mi) RC_GET_BIT2(prob, mi, ; , ;)               

int RangeDecoderBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd)
{
  int mi = 1;
  int i;
  #ifdef _LZMA_LOC_OPT
  RC_INIT_VAR
  #endif
  for(i = numLevels; i > 0; i--)
  {
    #ifdef _LZMA_LOC_OPT
    CProb *prob = probs + mi;
    RC_GET_BIT(prob, mi)
    #else
    mi = (mi + mi) + RangeDecoderBitDecode(probs + mi, rd);
    #endif
  }
  #ifdef _LZMA_LOC_OPT
  RC_FLUSH_VAR
  #endif
  return mi - (1 << numLevels);
}

int RangeDecoderReverseBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd)
{
  int mi = 1;
  int i;
  int symbol = 0;
  #ifdef _LZMA_LOC_OPT
  RC_INIT_VAR
  #endif
  for(i = 0; i < numLevels; i++)
  {
    #ifdef _LZMA_LOC_OPT
    CProb *prob = probs + mi;
    RC_GET_BIT2(prob, mi, ; , symbol |= (1 << i))
    #else
    int bit = RangeDecoderBitDecode(probs + mi, rd);
    mi = mi + mi + bit;
    symbol |= (bit << i);
    #endif
  }
  #ifdef _LZMA_LOC_OPT
  RC_FLUSH_VAR
  #endif
  return symbol;
}

Byte LzmaLiteralDecode(CProb *probs, CRangeDecoder *rd)
{ 
  int symbol = 1;
  #ifdef _LZMA_LOC_OPT
  RC_INIT_VAR
  #endif
  do
  {
    #ifdef _LZMA_LOC_OPT
    CProb *prob = probs + symbol;
    RC_GET_BIT(prob, symbol)
    #else
    symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd);
    #endif
  }
  while (symbol < 0x100);
  #ifdef _LZMA_LOC_OPT
  RC_FLUSH_VAR
  #endif
  return symbol;
}

Byte LzmaLiteralDecodeMatch(CProb *probs, CRangeDecoder *rd, Byte matchByte)
{ 
  int symbol = 1;
  #ifdef _LZMA_LOC_OPT
  RC_INIT_VAR
  #endif
  do
  {
    int bit;
    int matchBit = (matchByte >> 7) & 1;
    matchByte <<= 1;
    #ifdef _LZMA_LOC_OPT
    {
      CProb *prob = probs + ((1 + matchBit) << 8) + symbol;
      RC_GET_BIT2(prob, symbol, bit = 0, bit = 1)
    }
    #else
    bit = RangeDecoderBitDecode(probs + ((1 + matchBit) << 8) + symbol, rd);
    symbol = (symbol << 1) | bit;
    #endif
    if (matchBit != bit)
    {
      while (symbol < 0x100)
      {
        #ifdef _LZMA_LOC_OPT
        CProb *prob = probs + symbol;
        RC_GET_BIT(prob, symbol)
        #else
        symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd);
        #endif
      }
      break;
    }
  }
  while (symbol < 0x100);
  #ifdef _LZMA_LOC_OPT
  RC_FLUSH_VAR
  #endif
  return symbol;
}

#define kNumPosBitsMax 4
#define kNumPosStatesMax (1 << kNumPosBitsMax)

#define kLenNumLowBits 3
#define kLenNumLowSymbols (1 << kLenNumLowBits)
#define kLenNumMidBits 3
#define kLenNumMidSymbols (1 << kLenNumMidBits)
#define kLenNumHighBits 8
#define kLenNumHighSymbols (1 << kLenNumHighBits)

#define LenChoice 0
#define LenChoice2 (LenChoice + 1)
#define LenLow (LenChoice2 + 1)
#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
#define kNumLenProbs (LenHigh + kLenNumHighSymbols) 

int LzmaLenDecode(CProb *p, CRangeDecoder *rd, int posState)
{
  if(RangeDecoderBitDecode(p + LenChoice, rd) == 0)
    return RangeDecoderBitTreeDecode(p + LenLow +
        (posState << kLenNumLowBits), kLenNumLowBits, rd);
  if(RangeDecoderBitDecode(p + LenChoice2, rd) == 0)
    return kLenNumLowSymbols + RangeDecoderBitTreeDecode(p + LenMid +
        (posState << kLenNumMidBits), kLenNumMidBits, rd);
  return kLenNumLowSymbols + kLenNumMidSymbols + 
      RangeDecoderBitTreeDecode(p + LenHigh, kLenNumHighBits, rd);
}

#define kNumStates 12

#define kStartPosModelIndex 4
#define kEndPosModelIndex 14
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))

#define kNumPosSlotBits 6
#define kNumLenToPosStates 4

#define kNumAlignBits 4
#define kAlignTableSize (1 << kNumAlignBits)

#define kMatchMinLen 2

#define IsMatch 0
#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
#define IsRepG0 (IsRep + kNumStates)
#define IsRepG1 (IsRepG0 + kNumStates)
#define IsRepG2 (IsRepG1 + kNumStates)
#define IsRep0Long (IsRepG2 + kNumStates)
#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
#define LenCoder (Align + kAlignTableSize)
#define RepLenCoder (LenCoder + kNumLenProbs)
#define Literal (RepLenCoder + kNumLenProbs)

#if Literal != LZMA_BASE_SIZE
StopCompilingDueBUG
#endif

#ifdef _LZMA_OUT_READ

typedef struct _LzmaVarState
{
  CRangeDecoder RangeDecoder;
  Byte *Dictionary;
  UInt32 DictionarySize;
  UInt32 DictionaryPos;
  UInt32 GlobalPos;
  UInt32 Reps[4];
  int lc;
  int lp;
  int pb;
  int State;
  int PreviousIsMatch;
  int RemainLen;
} LzmaVarState;

int LzmaDecoderInit(
    unsigned char *buffer, UInt32 bufferSize,
    int lc, int lp, int pb,
    unsigned char *dictionary, UInt32 dictionarySize,
    #ifdef _LZMA_IN_CB
    ILzmaInCallback *inCallback
    #else
    unsigned char *inStream, UInt32 inSize
    #endif
    )
{
  LzmaVarState *vs = (LzmaVarState *)buffer;
  CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
  UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
  UInt32 i;
  if (bufferSize < numProbs * sizeof(CProb) + sizeof(LzmaVarState))
    return LZMA_RESULT_NOT_ENOUGH_MEM;
  vs->Dictionary = dictionary;
  vs->DictionarySize = dictionarySize;
  vs->DictionaryPos = 0;
  vs->GlobalPos = 0;
  vs->Reps[0] = vs->Reps[1] = vs->Reps[2] = vs->Reps[3] = 1;
  vs->lc = lc;
  vs->lp = lp;
  vs->pb = pb;
  vs->State = 0;
  vs->PreviousIsMatch = 0;
  vs->RemainLen = 0;
  dictionary[dictionarySize - 1] = 0;
  for (i = 0; i < numProbs; i++)
    p[i] = kBitModelTotal >> 1; 
  RangeDecoderInit(&vs->RangeDecoder, 
      #ifdef _LZMA_IN_CB
      inCallback
      #else
      inStream, inSize
      #endif
  );
  return LZMA_RESULT_OK;
}

int LzmaDecode(unsigned char *buffer, 
    unsigned char *outStream, UInt32 outSize,
    UInt32 *outSizeProcessed)
{
  LzmaVarState *vs = (LzmaVarState *)buffer;
  CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
  CRangeDecoder rd = vs->RangeDecoder;
  int state = vs->State;
  int previousIsMatch = vs->PreviousIsMatch;
  Byte previousByte;
  UInt32 rep0 = vs->Reps[0], rep1 = vs->Reps[1], rep2 = vs->Reps[2], rep3 = vs->Reps[3];
  UInt32 nowPos = 0;
  UInt32 posStateMask = (1 << (vs->pb)) - 1;
  UInt32 literalPosMask = (1 << (vs->lp)) - 1;
  int lc = vs->lc;
  int len = vs->RemainLen;
  UInt32 globalPos = vs->GlobalPos;

  Byte *dictionary = vs->Dictionary;
  UInt32 dictionarySize = vs->DictionarySize;
  UInt32 dictionaryPos = vs->DictionaryPos;

  if (len == -1)
  {
    *outSizeProcessed = 0;
    return LZMA_RESULT_OK;
  }

  while(len > 0 && nowPos < outSize)
  {
    UInt32 pos = dictionaryPos - rep0;
    if (pos >= dictionarySize)
      pos += dictionarySize;
    outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos];
    if (++dictionaryPos == dictionarySize)
      dictionaryPos = 0;
    len--;
  }
  if (dictionaryPos == 0)
    previousByte = dictionary[dictionarySize - 1];
  else
    previousByte = dictionary[dictionaryPos - 1];
#else

int LzmaDecode(
    Byte *buffer, UInt32 bufferSize,
    int lc, int lp, int pb,
    #ifdef _LZMA_IN_CB
    ILzmaInCallback *inCallback,
    #else
    unsigned char *inStream, UInt32 inSize,
    #endif
    unsigned char *outStream, UInt32 outSize,
    UInt32 *outSizeProcessed)
{
  UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
  CProb *p = (CProb *)buffer;
  CRangeDecoder rd;
  UInt32 i;
  int state = 0;
  int previousIsMatch = 0;
  Byte previousByte = 0;
  UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1;
  UInt32 nowPos = 0;
  UInt32 posStateMask = (1 << pb) - 1;
  UInt32 literalPosMask = (1 << lp) - 1;
  int len = 0;
  if (bufferSize < numProbs * sizeof(CProb))
    return LZMA_RESULT_NOT_ENOUGH_MEM;
  for (i = 0; i < numProbs; i++)
    p[i] = kBitModelTotal >> 1; 
  RangeDecoderInit(&rd, 
      #ifdef _LZMA_IN_CB
      inCallback
      #else
      inStream, inSize
      #endif
      );
#endif

  *outSizeProcessed = 0;
  while(nowPos < outSize)
  {
    int posState = (int)(
        (nowPos 
        #ifdef _LZMA_OUT_READ
        + globalPos
        #endif
        )
        & posStateMask);
    #ifdef _LZMA_IN_CB
    if (rd.Result != LZMA_RESULT_OK)
      return rd.Result;
    #endif
    if (rd.ExtraBytes != 0)
      return LZMA_RESULT_DATA_ERROR;
    if (RangeDecoderBitDecode(p + IsMatch + (state << kNumPosBitsMax) + posState, &rd) == 0)
    {
      CProb *probs = p + Literal + (LZMA_LIT_SIZE * 
        (((
        (nowPos 
        #ifdef _LZMA_OUT_READ
        + globalPos
        #endif
        )
        & literalPosMask) << lc) + (previousByte >> (8 - lc))));

      if (state < 4) state = 0;
      else if (state < 10) state -= 3;
      else state -= 6;
      if (previousIsMatch)
      {
        Byte matchByte;
        #ifdef _LZMA_OUT_READ
        UInt32 pos = dictionaryPos - rep0;
        if (pos >= dictionarySize)
          pos += dictionarySize;
        matchByte = dictionary[pos];
        #else
        matchByte = outStream[nowPos - rep0];
        #endif
        previousByte = LzmaLiteralDecodeMatch(probs, &rd, matchByte);
        previousIsMatch = 0;
      }
      else
        previousByte = LzmaLiteralDecode(probs, &rd);
      outStream[nowPos++] = previousByte;
      #ifdef _LZMA_OUT_READ
      dictionary[dictionaryPos] = previousByte;
      if (++dictionaryPos == dictionarySize)
        dictionaryPos = 0;
      #endif
    }
    else             
    {
      previousIsMatch = 1;
      if (RangeDecoderBitDecode(p + IsRep + state, &rd) == 1)
      {
        if (RangeDecoderBitDecode(p + IsRepG0 + state, &rd) == 0)
        {
          if (RangeDecoderBitDecode(p + IsRep0Long + (state << kNumPosBitsMax) + posState, &rd) == 0)
          {
            #ifdef _LZMA_OUT_READ
            UInt32 pos;
            #endif
            if (
               (nowPos 
                #ifdef _LZMA_OUT_READ
                + globalPos
                #endif
               )
               == 0)
              return LZMA_RESULT_DATA_ERROR;
            state = state < 7 ? 9 : 11;
            #ifdef _LZMA_OUT_READ
            pos = dictionaryPos - rep0;
            if (pos >= dictionarySize)
              pos += dictionarySize;
            previousByte = dictionary[pos];
            dictionary[dictionaryPos] = previousByte;
            if (++dictionaryPos == dictionarySize)
              dictionaryPos = 0;
            #else
            previousByte = outStream[nowPos - rep0];
            #endif
            outStream[nowPos++] = previousByte;
            continue;
          }
        }
        else
        {
          UInt32 distance;
          if(RangeDecoderBitDecode(p + IsRepG1 + state, &rd) == 0)
            distance = rep1;
          else 
          {
            if(RangeDecoderBitDecode(p + IsRepG2 + state, &rd) == 0)
              distance = rep2;
            else
            {
              distance = rep3;
              rep3 = rep2;
            }
            rep2 = rep1;
          }
          rep1 = rep0;
          rep0 = distance;
        }
        len = LzmaLenDecode(p + RepLenCoder, &rd, posState);
        state = state < 7 ? 8 : 11;
      }
      else
      {
        int posSlot;
        rep3 = rep2;
        rep2 = rep1;
        rep1 = rep0;
        state = state < 7 ? 7 : 10;
        len = LzmaLenDecode(p + LenCoder, &rd, posState);
        posSlot = RangeDecoderBitTreeDecode(p + PosSlot +
            ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << 
            kNumPosSlotBits), kNumPosSlotBits, &rd);
        if (posSlot >= kStartPosModelIndex)
        {
          int numDirectBits = ((posSlot >> 1) - 1);
          rep0 = ((2 | ((UInt32)posSlot & 1)) << numDirectBits);
          if (posSlot < kEndPosModelIndex)
          {
            rep0 += RangeDecoderReverseBitTreeDecode(
                p + SpecPos + rep0 - posSlot - 1, numDirectBits, &rd);
          }
          else
          {
            rep0 += RangeDecoderDecodeDirectBits(&rd, 
                numDirectBits - kNumAlignBits) << kNumAlignBits;
            rep0 += RangeDecoderReverseBitTreeDecode(p + Align, kNumAlignBits, &rd);
          }
        }
        else
          rep0 = posSlot;
        rep0++;
      }
      if (rep0 == (UInt32)(0))
      {
        /* it's for stream version */
        len = -1;
        break;
      }
      if (rep0 > nowPos 
        #ifdef _LZMA_OUT_READ
        + globalPos
        #endif
        )
      {
        return LZMA_RESULT_DATA_ERROR;
      }
      len += kMatchMinLen;
      do
      {
        #ifdef _LZMA_OUT_READ
        UInt32 pos = dictionaryPos - rep0;
        if (pos >= dictionarySize)
          pos += dictionarySize;
        previousByte = dictionary[pos];
        dictionary[dictionaryPos] = previousByte;
        if (++dictionaryPos == dictionarySize)
          dictionaryPos = 0;
        #else
        previousByte = outStream[nowPos - rep0];
        #endif
        outStream[nowPos++] = previousByte;
        len--;
      }
      while(len > 0 && nowPos < outSize);
    }
  }

  #ifdef _LZMA_OUT_READ
  vs->RangeDecoder = rd;
  vs->DictionaryPos = dictionaryPos;
  vs->GlobalPos = globalPos + nowPos;
  vs->Reps[0] = rep0;
  vs->Reps[1] = rep1;
  vs->Reps[2] = rep2;
  vs->Reps[3] = rep3;
  vs->State = state;
  vs->PreviousIsMatch = previousIsMatch;
  vs->RemainLen = len;
  #endif

  *outSizeProcessed = nowPos;
  return LZMA_RESULT_OK;
}