summaryrefslogtreecommitdiff
path: root/package/heimdal/src/lib/hcrypto/libtommath/tommath.h
diff options
context:
space:
mode:
Diffstat (limited to 'package/heimdal/src/lib/hcrypto/libtommath/tommath.h')
-rw-r--r--package/heimdal/src/lib/hcrypto/libtommath/tommath.h592
1 files changed, 0 insertions, 592 deletions
diff --git a/package/heimdal/src/lib/hcrypto/libtommath/tommath.h b/package/heimdal/src/lib/hcrypto/libtommath/tommath.h
deleted file mode 100644
index 426207a29..000000000
--- a/package/heimdal/src/lib/hcrypto/libtommath/tommath.h
+++ /dev/null
@@ -1,592 +0,0 @@
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
- */
-#ifndef BN_H_
-#define BN_H_
-
-#include <stdio.h>
-#include <string.h>
-#include <stdlib.h>
-#include <ctype.h>
-#include <limits.h>
-
-#include <tommath_class.h>
-
-#ifndef MIN
- #define MIN(x,y) ((x)<(y)?(x):(y))
-#endif
-
-#ifndef MAX
- #define MAX(x,y) ((x)>(y)?(x):(y))
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-
-/* C++ compilers don't like assigning void * to mp_digit * */
-#define OPT_CAST(x) (x *)
-
-#else
-
-/* C on the other hand doesn't care */
-#define OPT_CAST(x)
-
-#endif
-
-
-/* detect 64-bit mode if possible */
-#if defined(__x86_64__)
- #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT))
- #define MP_64BIT
- #endif
-#endif
-
-/* some default configurations.
- *
- * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
- * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
- *
- * At the very least a mp_digit must be able to hold 7 bits
- * [any size beyond that is ok provided it doesn't overflow the data type]
- */
-#ifdef MP_8BIT
- typedef unsigned char mp_digit;
- typedef unsigned short mp_word;
-#elif defined(MP_16BIT)
- typedef unsigned short mp_digit;
- typedef unsigned long mp_word;
-#elif defined(MP_64BIT)
- /* for GCC only on supported platforms */
-#ifndef CRYPT
- typedef unsigned long long ulong64;
- typedef signed long long long64;
-#endif
-
- typedef unsigned long mp_digit;
- typedef unsigned long mp_word __attribute__ ((mode(TI)));
-
- #define DIGIT_BIT 60
-#else
- /* this is the default case, 28-bit digits */
-
- /* this is to make porting into LibTomCrypt easier :-) */
-#ifndef CRYPT
- #if defined(_MSC_VER) || defined(__BORLANDC__)
- typedef unsigned __int64 ulong64;
- typedef signed __int64 long64;
- #else
- typedef unsigned long long ulong64;
- typedef signed long long long64;
- #endif
-#endif
-
- typedef unsigned long mp_digit;
- typedef ulong64 mp_word;
-
-#ifdef MP_31BIT
- /* this is an extension that uses 31-bit digits */
- #define DIGIT_BIT 31
-#else
- /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
- #define DIGIT_BIT 28
- #define MP_28BIT
-#endif
-#endif
-
-/* define heap macros */
-#ifndef CRYPT
- /* default to libc stuff */
- #ifndef XMALLOC
- #define XMALLOC malloc
- #define XFREE free
- #define XREALLOC realloc
- #define XCALLOC calloc
- #else
- /* prototypes for our heap functions */
- extern void *XMALLOC(size_t n);
- extern void *XREALLOC(void *p, size_t n);
- extern void *XCALLOC(size_t n, size_t s);
- extern void XFREE(void *p);
- #endif
-#endif
-
-
-/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
-#ifndef DIGIT_BIT
- #define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */
-#endif
-
-#define MP_DIGIT_BIT DIGIT_BIT
-#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
-#define MP_DIGIT_MAX MP_MASK
-
-/* equalities */
-#define MP_LT -1 /* less than */
-#define MP_EQ 0 /* equal to */
-#define MP_GT 1 /* greater than */
-
-#define MP_ZPOS 0 /* positive integer */
-#define MP_NEG 1 /* negative */
-
-#define MP_OKAY 0 /* ok result */
-#define MP_MEM -2 /* out of mem */
-#define MP_VAL -3 /* invalid input */
-#define MP_RANGE MP_VAL
-
-#define MP_YES 1 /* yes response */
-#define MP_NO 0 /* no response */
-
-/* Primality generation flags */
-#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
-#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
-#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
-
-typedef int mp_err;
-
-/* you'll have to tune these... */
-extern int KARATSUBA_MUL_CUTOFF,
- KARATSUBA_SQR_CUTOFF,
- TOOM_MUL_CUTOFF,
- TOOM_SQR_CUTOFF;
-
-/* define this to use lower memory usage routines (exptmods mostly) */
-/* #define MP_LOW_MEM */
-
-/* default precision */
-#ifndef MP_PREC
- #ifndef MP_LOW_MEM
- #define MP_PREC 32 /* default digits of precision */
- #else
- #define MP_PREC 8 /* default digits of precision */
- #endif
-#endif
-
-/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
-#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
-
-/* the infamous mp_int structure */
-typedef struct {
- int used, alloc, sign;
- mp_digit *dp;
-} mp_int;
-
-/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
-typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
-
-
-#define USED(m) ((m)->used)
-#define DIGIT(m,k) ((m)->dp[(k)])
-#define SIGN(m) ((m)->sign)
-
-/* error code to char* string */
-char *mp_error_to_string(int code);
-
-/* ---> init and deinit bignum functions <--- */
-/* init a bignum */
-int mp_init(mp_int *a);
-
-/* free a bignum */
-void mp_clear(mp_int *a);
-
-/* init a null terminated series of arguments */
-int mp_init_multi(mp_int *mp, ...);
-
-/* clear a null terminated series of arguments */
-void mp_clear_multi(mp_int *mp, ...);
-
-/* exchange two ints */
-void mp_exch(mp_int *a, mp_int *b);
-
-/* shrink ram required for a bignum */
-int mp_shrink(mp_int *a);
-
-/* grow an int to a given size */
-int mp_grow(mp_int *a, int size);
-
-/* init to a given number of digits */
-int mp_init_size(mp_int *a, int size);
-
-/* ---> Basic Manipulations <--- */
-#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
-#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
-#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
-#define mp_isneg(a) (((a)->sign) ? MP_YES : MP_NO)
-
-/* set to zero */
-void mp_zero(mp_int *a);
-
-/* set to zero, multi */
-void mp_zero_multi(mp_int *a, ...);
-
-/* set to a digit */
-void mp_set(mp_int *a, mp_digit b);
-
-/* set a 32-bit const */
-int mp_set_int(mp_int *a, unsigned long b);
-
-/* get a 32-bit value */
-unsigned long mp_get_int(mp_int * a);
-
-/* initialize and set a digit */
-int mp_init_set (mp_int * a, mp_digit b);
-
-/* initialize and set 32-bit value */
-int mp_init_set_int (mp_int * a, unsigned long b);
-
-/* copy, b = a */
-int mp_copy(mp_int *a, mp_int *b);
-
-/* inits and copies, a = b */
-int mp_init_copy(mp_int *a, mp_int *b);
-
-/* trim unused digits */
-void mp_clamp(mp_int *a);
-
-/* ---> digit manipulation <--- */
-
-/* right shift by "b" digits */
-void mp_rshd(mp_int *a, int b);
-
-/* left shift by "b" digits */
-int mp_lshd(mp_int *a, int b);
-
-/* c = a / 2**b */
-int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
-
-/* b = a/2 */
-int mp_div_2(mp_int *a, mp_int *b);
-
-/* c = a * 2**b */
-int mp_mul_2d(mp_int *a, int b, mp_int *c);
-
-/* b = a*2 */
-int mp_mul_2(mp_int *a, mp_int *b);
-
-/* c = a mod 2**d */
-int mp_mod_2d(mp_int *a, int b, mp_int *c);
-
-/* computes a = 2**b */
-int mp_2expt(mp_int *a, int b);
-
-/* Counts the number of lsbs which are zero before the first zero bit */
-int mp_cnt_lsb(mp_int *a);
-
-/* I Love Earth! */
-
-/* makes a pseudo-random int of a given size */
-int mp_rand(mp_int *a, int digits);
-
-/* ---> binary operations <--- */
-/* c = a XOR b */
-int mp_xor(mp_int *a, mp_int *b, mp_int *c);
-
-/* c = a OR b */
-int mp_or(mp_int *a, mp_int *b, mp_int *c);
-
-/* c = a AND b */
-int mp_and(mp_int *a, mp_int *b, mp_int *c);
-
-/* ---> Basic arithmetic <--- */
-
-/* b = -a */
-int mp_neg(mp_int *a, mp_int *b);
-
-/* b = |a| */
-int mp_abs(mp_int *a, mp_int *b);
-
-/* compare a to b */
-int mp_cmp(mp_int *a, mp_int *b);
-
-/* compare |a| to |b| */
-int mp_cmp_mag(mp_int *a, mp_int *b);
-
-/* c = a + b */
-int mp_add(mp_int *a, mp_int *b, mp_int *c);
-
-/* c = a - b */
-int mp_sub(mp_int *a, mp_int *b, mp_int *c);
-
-/* c = a * b */
-int mp_mul(mp_int *a, mp_int *b, mp_int *c);
-
-/* b = a*a */
-int mp_sqr(mp_int *a, mp_int *b);
-
-/* a/b => cb + d == a */
-int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-
-/* c = a mod b, 0 <= c < b */
-int mp_mod(mp_int *a, mp_int *b, mp_int *c);
-
-/* ---> single digit functions <--- */
-
-/* compare against a single digit */
-int mp_cmp_d(mp_int *a, mp_digit b);
-
-/* c = a + b */
-int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
-
-/* c = a - b */
-int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
-
-/* c = a * b */
-int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
-
-/* a/b => cb + d == a */
-int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
-
-/* a/3 => 3c + d == a */
-int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
-
-/* c = a**b */
-int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
-
-/* c = a mod b, 0 <= c < b */
-int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
-
-/* ---> number theory <--- */
-
-/* d = a + b (mod c) */
-int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-
-/* d = a - b (mod c) */
-int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-
-/* d = a * b (mod c) */
-int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-
-/* c = a * a (mod b) */
-int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
-
-/* c = 1/a (mod b) */
-int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
-
-/* c = (a, b) */
-int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
-
-/* produces value such that U1*a + U2*b = U3 */
-int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
-
-/* c = [a, b] or (a*b)/(a, b) */
-int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
-
-/* finds one of the b'th root of a, such that |c|**b <= |a|
- *
- * returns error if a < 0 and b is even
- */
-int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
-
-/* special sqrt algo */
-int mp_sqrt(mp_int *arg, mp_int *ret);
-
-/* is number a square? */
-int mp_is_square(mp_int *arg, int *ret);
-
-/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
-int mp_jacobi(mp_int *a, mp_int *n, int *c);
-
-/* used to setup the Barrett reduction for a given modulus b */
-int mp_reduce_setup(mp_int *a, mp_int *b);
-
-/* Barrett Reduction, computes a (mod b) with a precomputed value c
- *
- * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
- * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
- */
-int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
-
-/* setups the montgomery reduction */
-int mp_montgomery_setup(mp_int *a, mp_digit *mp);
-
-/* computes a = B**n mod b without division or multiplication useful for
- * normalizing numbers in a Montgomery system.
- */
-int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
-
-/* computes x/R == x (mod N) via Montgomery Reduction */
-int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
-
-/* returns 1 if a is a valid DR modulus */
-int mp_dr_is_modulus(mp_int *a);
-
-/* sets the value of "d" required for mp_dr_reduce */
-void mp_dr_setup(mp_int *a, mp_digit *d);
-
-/* reduces a modulo b using the Diminished Radix method */
-int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
-
-/* returns true if a can be reduced with mp_reduce_2k */
-int mp_reduce_is_2k(mp_int *a);
-
-/* determines k value for 2k reduction */
-int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
-
-/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
-int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
-
-/* returns true if a can be reduced with mp_reduce_2k_l */
-int mp_reduce_is_2k_l(mp_int *a);
-
-/* determines k value for 2k reduction */
-int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
-
-/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
-int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
-
-/* d = a**b (mod c) */
-int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-
-/* ---> Primes <--- */
-
-/* number of primes */
-#ifdef MP_8BIT
- #define PRIME_SIZE 31
-#else
- #define PRIME_SIZE 256
-#endif
-
-/* table of first PRIME_SIZE primes */
-extern const mp_digit ltm_prime_tab[];
-
-/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
-int mp_prime_is_divisible(mp_int *a, int *result);
-
-/* performs one Fermat test of "a" using base "b".
- * Sets result to 0 if composite or 1 if probable prime
- */
-int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
-
-/* performs one Miller-Rabin test of "a" using base "b".
- * Sets result to 0 if composite or 1 if probable prime
- */
-int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
-
-/* This gives [for a given bit size] the number of trials required
- * such that Miller-Rabin gives a prob of failure lower than 2^-96
- */
-int mp_prime_rabin_miller_trials(int size);
-
-/* performs t rounds of Miller-Rabin on "a" using the first
- * t prime bases. Also performs an initial sieve of trial
- * division. Determines if "a" is prime with probability
- * of error no more than (1/4)**t.
- *
- * Sets result to 1 if probably prime, 0 otherwise
- */
-int mp_prime_is_prime(mp_int *a, int t, int *result);
-
-/* finds the next prime after the number "a" using "t" trials
- * of Miller-Rabin.
- *
- * bbs_style = 1 means the prime must be congruent to 3 mod 4
- */
-int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
-
-/* makes a truly random prime of a given size (bytes),
- * call with bbs = 1 if you want it to be congruent to 3 mod 4
- *
- * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
- * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
- * so it can be NULL
- *
- * The prime generated will be larger than 2^(8*size).
- */
-#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
-
-/* makes a truly random prime of a given size (bits),
- *
- * Flags are as follows:
- *
- * LTM_PRIME_BBS - make prime congruent to 3 mod 4
- * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
- * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
- * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
- *
- * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
- * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
- * so it can be NULL
- *
- */
-int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
-
-int mp_find_prime(mp_int *a);
-
-int mp_isprime(mp_int *a);
-
-/* ---> radix conversion <--- */
-int mp_count_bits(mp_int *a);
-
-int mp_unsigned_bin_size(mp_int *a);
-int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
-int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
-int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
-
-int mp_signed_bin_size(mp_int *a);
-int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
-int mp_to_signed_bin(mp_int *a, unsigned char *b);
-int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
-
-int mp_read_radix(mp_int *a, const char *str, int radix);
-int mp_toradix(mp_int *a, char *str, int radix);
-int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
-int mp_radix_size(mp_int *a, int radix, int *size);
-
-int mp_fread(mp_int *a, int radix, FILE *stream);
-int mp_fwrite(mp_int *a, int radix, FILE *stream);
-
-#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
-#define mp_raw_size(mp) mp_signed_bin_size(mp)
-#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
-#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
-#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
-#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
-
-#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
-#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
-#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
-#define mp_tohex(M, S) mp_toradix((M), (S), 16)
-
-/* lowlevel functions, do not call! */
-int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
-int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
-#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
-int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-int fast_s_mp_sqr(mp_int *a, mp_int *b);
-int s_mp_sqr(mp_int *a, mp_int *b);
-int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
-int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
-int mp_karatsuba_sqr(mp_int *a, mp_int *b);
-int mp_toom_sqr(mp_int *a, mp_int *b);
-int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
-int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
-int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
-int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
-int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
-void bn_reverse(unsigned char *s, int len);
-
-extern const char *mp_s_rmap;
-
-#ifdef __cplusplus
- }
-#endif
-
-#endif
-
-
-/* $Source: /cvs/libtom/libtommath/tommath.h,v $ */
-/* $Revision: 1.8 $ */
-/* $Date: 2006/03/31 14:18:44 $ */