summaryrefslogtreecommitdiff
path: root/target/m68k
diff options
context:
space:
mode:
authorWaldemar Brodkorb <wbx@uclibc-ng.org>2015-10-31 18:50:57 +0100
committerWaldemar Brodkorb <wbx@uclibc-ng.org>2015-11-01 22:12:17 +0100
commitc37e025dde75c5673ba85d10b8fe308e8951bbdd (patch)
tree10c7eb6d8576a5c96ac5afb144dc79bcb14d4295 /target/m68k
parentba4365abc4d9eb4dbe9e929b3838494b5cbc433c (diff)
fix fec problem in qemu-m68k-mcf5208
Diffstat (limited to 'target/m68k')
-rw-r--r--target/m68k/qemu-m68k-mcf5208/patches/3.14.54/m68k-coldfire-fec.patch (renamed from target/m68k/qemu-m68k/patches/3.14.54/m68k-coldfire-fec.patch)0
-rw-r--r--target/m68k/qemu-m68k-mcf5208/patches/3.18.22/m68k-coldfire-fec.patch (renamed from target/m68k/qemu-m68k/patches/3.18.22/m68k-coldfire-fec.patch)0
-rw-r--r--target/m68k/qemu-m68k-mcf5208/patches/4.1.10/m68k-coldfire-fec.patch3626
3 files changed, 3626 insertions, 0 deletions
diff --git a/target/m68k/qemu-m68k/patches/3.14.54/m68k-coldfire-fec.patch b/target/m68k/qemu-m68k-mcf5208/patches/3.14.54/m68k-coldfire-fec.patch
index be0b18ad7..be0b18ad7 100644
--- a/target/m68k/qemu-m68k/patches/3.14.54/m68k-coldfire-fec.patch
+++ b/target/m68k/qemu-m68k-mcf5208/patches/3.14.54/m68k-coldfire-fec.patch
diff --git a/target/m68k/qemu-m68k/patches/3.18.22/m68k-coldfire-fec.patch b/target/m68k/qemu-m68k-mcf5208/patches/3.18.22/m68k-coldfire-fec.patch
index ceaa21ce6..ceaa21ce6 100644
--- a/target/m68k/qemu-m68k/patches/3.18.22/m68k-coldfire-fec.patch
+++ b/target/m68k/qemu-m68k-mcf5208/patches/3.18.22/m68k-coldfire-fec.patch
diff --git a/target/m68k/qemu-m68k-mcf5208/patches/4.1.10/m68k-coldfire-fec.patch b/target/m68k/qemu-m68k-mcf5208/patches/4.1.10/m68k-coldfire-fec.patch
new file mode 100644
index 000000000..daebb62ae
--- /dev/null
+++ b/target/m68k/qemu-m68k-mcf5208/patches/4.1.10/m68k-coldfire-fec.patch
@@ -0,0 +1,3626 @@
+diff -Nur linux-4.1.10.orig/drivers/net/ethernet/freescale/fec_main.c linux-4.1.10/drivers/net/ethernet/freescale/fec_main.c
+--- linux-4.1.10.orig/drivers/net/ethernet/freescale/fec_main.c 2015-10-03 13:49:38.000000000 +0200
++++ linux-4.1.10/drivers/net/ethernet/freescale/fec_main.c 2015-10-31 18:05:40.000000000 +0100
+@@ -137,7 +137,7 @@
+ module_param_array(macaddr, byte, NULL, 0);
+ MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
+
+-#if defined(CONFIG_M5272)
++#if defined(CONFIG_COLDFIRE)
+ /*
+ * Some hardware gets it MAC address out of local flash memory.
+ * if this is non-zero then assume it is the address to get MAC from.
+@@ -155,7 +155,7 @@
+ #else
+ #define FEC_FLASHMAC 0
+ #endif
+-#endif /* CONFIG_M5272 */
++#endif /* CONFIG_COLDFIRE */
+
+ /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
+ */
+@@ -969,7 +969,7 @@
+ /* Set MII speed */
+ writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
+
+-#if !defined(CONFIG_M5272)
++#if !defined(CONFIG_COLDFIRE)
+ /* set RX checksum */
+ val = readl(fep->hwp + FEC_RACC);
+ if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
+@@ -1033,7 +1033,7 @@
+ #endif
+ }
+
+-#if !defined(CONFIG_M5272)
++#if !defined(CONFIG_COLDFIRE)
+ /* enable pause frame*/
+ if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
+ ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
+@@ -1051,13 +1051,13 @@
+ } else {
+ rcntl &= ~FEC_ENET_FCE;
+ }
+-#endif /* !defined(CONFIG_M5272) */
++#endif /* !defined(CONFIG_COLDFIRE) */
+
+ writel(rcntl, fep->hwp + FEC_R_CNTRL);
+
+ /* Setup multicast filter. */
+ set_multicast_list(ndev);
+-#ifndef CONFIG_M5272
++#ifndef CONFIG_COLDFIRE
+ writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
+ writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
+ #endif
+@@ -1072,7 +1072,7 @@
+ if (fep->bufdesc_ex)
+ ecntl |= (1 << 4);
+
+-#ifndef CONFIG_M5272
++#ifndef CONFIG_COLDFIRE
+ /* Enable the MIB statistic event counters */
+ writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
+ #endif
+@@ -1657,7 +1657,7 @@
+ * 3) from flash or fuse (via platform data)
+ */
+ if (!is_valid_ether_addr(iap)) {
+-#ifdef CONFIG_M5272
++#ifdef CONFIG_COLDFIRE
+ if (FEC_FLASHMAC)
+ iap = (unsigned char *)FEC_FLASHMAC;
+ #else
+@@ -1931,7 +1931,7 @@
+ if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
+ phy_dev->supported &= PHY_GBIT_FEATURES;
+ phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
+-#if !defined(CONFIG_M5272)
++#if !defined(CONFIG_COLDFIRE)
+ phy_dev->supported |= SUPPORTED_Pause;
+ #endif
+ }
+@@ -2148,7 +2148,7 @@
+ }
+ }
+
+-#if !defined(CONFIG_M5272)
++#if !defined(CONFIG_COLDFIRE)
+
+ static void fec_enet_get_pauseparam(struct net_device *ndev,
+ struct ethtool_pauseparam *pause)
+@@ -2303,7 +2303,7 @@
+ return -EOPNOTSUPP;
+ }
+ }
+-#endif /* !defined(CONFIG_M5272) */
++#endif /* !defined(CONFIG_COLDFIRE) */
+
+ static int fec_enet_nway_reset(struct net_device *dev)
+ {
+@@ -2520,7 +2520,7 @@
+ .get_link = ethtool_op_get_link,
+ .get_coalesce = fec_enet_get_coalesce,
+ .set_coalesce = fec_enet_set_coalesce,
+-#ifndef CONFIG_M5272
++#ifndef CONFIG_COLDFIRE
+ .get_pauseparam = fec_enet_get_pauseparam,
+ .set_pauseparam = fec_enet_set_pauseparam,
+ .get_strings = fec_enet_get_strings,
+@@ -3220,7 +3220,7 @@
+ fep->num_rx_queues = num_rx_qs;
+ fep->num_tx_queues = num_tx_qs;
+
+-#if !defined(CONFIG_M5272)
++#if !defined(CONFIG_COLDFIRE)
+ /* default enable pause frame auto negotiation */
+ if (fep->quirks & FEC_QUIRK_HAS_GBIT)
+ fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
+diff -Nur linux-4.1.10.orig/drivers/net/ethernet/freescale/fec_main.c.orig linux-4.1.10/drivers/net/ethernet/freescale/fec_main.c.orig
+--- linux-4.1.10.orig/drivers/net/ethernet/freescale/fec_main.c.orig 1970-01-01 01:00:00.000000000 +0100
++++ linux-4.1.10/drivers/net/ethernet/freescale/fec_main.c.orig 2015-10-03 13:49:38.000000000 +0200
+@@ -0,0 +1,3504 @@
++/*
++ * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
++ * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
++ *
++ * Right now, I am very wasteful with the buffers. I allocate memory
++ * pages and then divide them into 2K frame buffers. This way I know I
++ * have buffers large enough to hold one frame within one buffer descriptor.
++ * Once I get this working, I will use 64 or 128 byte CPM buffers, which
++ * will be much more memory efficient and will easily handle lots of
++ * small packets.
++ *
++ * Much better multiple PHY support by Magnus Damm.
++ * Copyright (c) 2000 Ericsson Radio Systems AB.
++ *
++ * Support for FEC controller of ColdFire processors.
++ * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
++ *
++ * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
++ * Copyright (c) 2004-2006 Macq Electronique SA.
++ *
++ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
++ */
++
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/string.h>
++#include <linux/ptrace.h>
++#include <linux/errno.h>
++#include <linux/ioport.h>
++#include <linux/slab.h>
++#include <linux/interrupt.h>
++#include <linux/delay.h>
++#include <linux/netdevice.h>
++#include <linux/etherdevice.h>
++#include <linux/skbuff.h>
++#include <linux/in.h>
++#include <linux/ip.h>
++#include <net/ip.h>
++#include <net/tso.h>
++#include <linux/tcp.h>
++#include <linux/udp.h>
++#include <linux/icmp.h>
++#include <linux/spinlock.h>
++#include <linux/workqueue.h>
++#include <linux/bitops.h>
++#include <linux/io.h>
++#include <linux/irq.h>
++#include <linux/clk.h>
++#include <linux/platform_device.h>
++#include <linux/phy.h>
++#include <linux/fec.h>
++#include <linux/of.h>
++#include <linux/of_device.h>
++#include <linux/of_gpio.h>
++#include <linux/of_mdio.h>
++#include <linux/of_net.h>
++#include <linux/regulator/consumer.h>
++#include <linux/if_vlan.h>
++#include <linux/pinctrl/consumer.h>
++#include <linux/prefetch.h>
++
++#include <asm/cacheflush.h>
++
++#include "fec.h"
++
++static void set_multicast_list(struct net_device *ndev);
++static void fec_enet_itr_coal_init(struct net_device *ndev);
++
++#define DRIVER_NAME "fec"
++
++#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
++
++/* Pause frame feild and FIFO threshold */
++#define FEC_ENET_FCE (1 << 5)
++#define FEC_ENET_RSEM_V 0x84
++#define FEC_ENET_RSFL_V 16
++#define FEC_ENET_RAEM_V 0x8
++#define FEC_ENET_RAFL_V 0x8
++#define FEC_ENET_OPD_V 0xFFF0
++
++static struct platform_device_id fec_devtype[] = {
++ {
++ /* keep it for coldfire */
++ .name = DRIVER_NAME,
++ .driver_data = 0,
++ }, {
++ .name = "imx25-fec",
++ .driver_data = FEC_QUIRK_USE_GASKET,
++ }, {
++ .name = "imx27-fec",
++ .driver_data = 0,
++ }, {
++ .name = "imx28-fec",
++ .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
++ FEC_QUIRK_SINGLE_MDIO,
++ }, {
++ .name = "imx6q-fec",
++ .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
++ FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
++ FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
++ }, {
++ .name = "mvf600-fec",
++ .driver_data = FEC_QUIRK_ENET_MAC,
++ }, {
++ .name = "imx6sx-fec",
++ .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
++ FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
++ FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
++ FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
++ }, {
++ /* sentinel */
++ }
++};
++MODULE_DEVICE_TABLE(platform, fec_devtype);
++
++enum imx_fec_type {
++ IMX25_FEC = 1, /* runs on i.mx25/50/53 */
++ IMX27_FEC, /* runs on i.mx27/35/51 */
++ IMX28_FEC,
++ IMX6Q_FEC,
++ MVF600_FEC,
++ IMX6SX_FEC,
++};
++
++static const struct of_device_id fec_dt_ids[] = {
++ { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
++ { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
++ { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
++ { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
++ { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
++ { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
++ { /* sentinel */ }
++};
++MODULE_DEVICE_TABLE(of, fec_dt_ids);
++
++static unsigned char macaddr[ETH_ALEN];
++module_param_array(macaddr, byte, NULL, 0);
++MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
++
++#if defined(CONFIG_M5272)
++/*
++ * Some hardware gets it MAC address out of local flash memory.
++ * if this is non-zero then assume it is the address to get MAC from.
++ */
++#if defined(CONFIG_NETtel)
++#define FEC_FLASHMAC 0xf0006006
++#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
++#define FEC_FLASHMAC 0xf0006000
++#elif defined(CONFIG_CANCam)
++#define FEC_FLASHMAC 0xf0020000
++#elif defined (CONFIG_M5272C3)
++#define FEC_FLASHMAC (0xffe04000 + 4)
++#elif defined(CONFIG_MOD5272)
++#define FEC_FLASHMAC 0xffc0406b
++#else
++#define FEC_FLASHMAC 0
++#endif
++#endif /* CONFIG_M5272 */
++
++/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
++ */
++#define PKT_MAXBUF_SIZE 1522
++#define PKT_MINBUF_SIZE 64
++#define PKT_MAXBLR_SIZE 1536
++
++/* FEC receive acceleration */
++#define FEC_RACC_IPDIS (1 << 1)
++#define FEC_RACC_PRODIS (1 << 2)
++#define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
++
++/*
++ * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
++ * size bits. Other FEC hardware does not, so we need to take that into
++ * account when setting it.
++ */
++#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
++ defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
++#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
++#else
++#define OPT_FRAME_SIZE 0
++#endif
++
++/* FEC MII MMFR bits definition */
++#define FEC_MMFR_ST (1 << 30)
++#define FEC_MMFR_OP_READ (2 << 28)
++#define FEC_MMFR_OP_WRITE (1 << 28)
++#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
++#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
++#define FEC_MMFR_TA (2 << 16)
++#define FEC_MMFR_DATA(v) (v & 0xffff)
++/* FEC ECR bits definition */
++#define FEC_ECR_MAGICEN (1 << 2)
++#define FEC_ECR_SLEEP (1 << 3)
++
++#define FEC_MII_TIMEOUT 30000 /* us */
++
++/* Transmitter timeout */
++#define TX_TIMEOUT (2 * HZ)
++
++#define FEC_PAUSE_FLAG_AUTONEG 0x1
++#define FEC_PAUSE_FLAG_ENABLE 0x2
++#define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
++#define FEC_WOL_FLAG_ENABLE (0x1 << 1)
++#define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
++
++#define COPYBREAK_DEFAULT 256
++
++#define TSO_HEADER_SIZE 128
++/* Max number of allowed TCP segments for software TSO */
++#define FEC_MAX_TSO_SEGS 100
++#define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
++
++#define IS_TSO_HEADER(txq, addr) \
++ ((addr >= txq->tso_hdrs_dma) && \
++ (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
++
++static int mii_cnt;
++
++static inline
++struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
++ struct fec_enet_private *fep,
++ int queue_id)
++{
++ struct bufdesc *new_bd = bdp + 1;
++ struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
++ struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
++ struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
++ struct bufdesc_ex *ex_base;
++ struct bufdesc *base;
++ int ring_size;
++
++ if (bdp >= txq->tx_bd_base) {
++ base = txq->tx_bd_base;
++ ring_size = txq->tx_ring_size;
++ ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
++ } else {
++ base = rxq->rx_bd_base;
++ ring_size = rxq->rx_ring_size;
++ ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
++ }
++
++ if (fep->bufdesc_ex)
++ return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
++ ex_base : ex_new_bd);
++ else
++ return (new_bd >= (base + ring_size)) ?
++ base : new_bd;
++}
++
++static inline
++struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
++ struct fec_enet_private *fep,
++ int queue_id)
++{
++ struct bufdesc *new_bd = bdp - 1;
++ struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
++ struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
++ struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
++ struct bufdesc_ex *ex_base;
++ struct bufdesc *base;
++ int ring_size;
++
++ if (bdp >= txq->tx_bd_base) {
++ base = txq->tx_bd_base;
++ ring_size = txq->tx_ring_size;
++ ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
++ } else {
++ base = rxq->rx_bd_base;
++ ring_size = rxq->rx_ring_size;
++ ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
++ }
++
++ if (fep->bufdesc_ex)
++ return (struct bufdesc *)((ex_new_bd < ex_base) ?
++ (ex_new_bd + ring_size) : ex_new_bd);
++ else
++ return (new_bd < base) ? (new_bd + ring_size) : new_bd;
++}
++
++static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
++ struct fec_enet_private *fep)
++{
++ return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
++}
++
++static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
++ struct fec_enet_priv_tx_q *txq)
++{
++ int entries;
++
++ entries = ((const char *)txq->dirty_tx -
++ (const char *)txq->cur_tx) / fep->bufdesc_size - 1;
++
++ return entries > 0 ? entries : entries + txq->tx_ring_size;
++}
++
++static void swap_buffer(void *bufaddr, int len)
++{
++ int i;
++ unsigned int *buf = bufaddr;
++
++ for (i = 0; i < len; i += 4, buf++)
++ swab32s(buf);
++}
++
++static void swap_buffer2(void *dst_buf, void *src_buf, int len)
++{
++ int i;
++ unsigned int *src = src_buf;
++ unsigned int *dst = dst_buf;
++
++ for (i = 0; i < len; i += 4, src++, dst++)
++ *dst = swab32p(src);
++}
++
++static void fec_dump(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct bufdesc *bdp;
++ struct fec_enet_priv_tx_q *txq;
++ int index = 0;
++
++ netdev_info(ndev, "TX ring dump\n");
++ pr_info("Nr SC addr len SKB\n");
++
++ txq = fep->tx_queue[0];
++ bdp = txq->tx_bd_base;
++
++ do {
++ pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
++ index,
++ bdp == txq->cur_tx ? 'S' : ' ',
++ bdp == txq->dirty_tx ? 'H' : ' ',
++ bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
++ txq->tx_skbuff[index]);
++ bdp = fec_enet_get_nextdesc(bdp, fep, 0);
++ index++;
++ } while (bdp != txq->tx_bd_base);
++}
++
++static inline bool is_ipv4_pkt(struct sk_buff *skb)
++{
++ return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
++}
++
++static int
++fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
++{
++ /* Only run for packets requiring a checksum. */
++ if (skb->ip_summed != CHECKSUM_PARTIAL)
++ return 0;
++
++ if (unlikely(skb_cow_head(skb, 0)))
++ return -1;
++
++ if (is_ipv4_pkt(skb))
++ ip_hdr(skb)->check = 0;
++ *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
++
++ return 0;
++}
++
++static int
++fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
++ struct sk_buff *skb,
++ struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct bufdesc *bdp = txq->cur_tx;
++ struct bufdesc_ex *ebdp;
++ int nr_frags = skb_shinfo(skb)->nr_frags;
++ unsigned short queue = skb_get_queue_mapping(skb);
++ int frag, frag_len;
++ unsigned short status;
++ unsigned int estatus = 0;
++ skb_frag_t *this_frag;
++ unsigned int index;
++ void *bufaddr;
++ dma_addr_t addr;
++ int i;
++
++ for (frag = 0; frag < nr_frags; frag++) {
++ this_frag = &skb_shinfo(skb)->frags[frag];
++ bdp = fec_enet_get_nextdesc(bdp, fep, queue);
++ ebdp = (struct bufdesc_ex *)bdp;
++
++ status = bdp->cbd_sc;
++ status &= ~BD_ENET_TX_STATS;
++ status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
++ frag_len = skb_shinfo(skb)->frags[frag].size;
++
++ /* Handle the last BD specially */
++ if (frag == nr_frags - 1) {
++ status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
++ if (fep->bufdesc_ex) {
++ estatus |= BD_ENET_TX_INT;
++ if (unlikely(skb_shinfo(skb)->tx_flags &
++ SKBTX_HW_TSTAMP && fep->hwts_tx_en))
++ estatus |= BD_ENET_TX_TS;
++ }
++ }
++
++ if (fep->bufdesc_ex) {
++ if (fep->quirks & FEC_QUIRK_HAS_AVB)
++ estatus |= FEC_TX_BD_FTYPE(queue);
++ if (skb->ip_summed == CHECKSUM_PARTIAL)
++ estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
++ ebdp->cbd_bdu = 0;
++ ebdp->cbd_esc = estatus;
++ }
++
++ bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
++
++ index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
++ if (((unsigned long) bufaddr) & fep->tx_align ||
++ fep->quirks & FEC_QUIRK_SWAP_FRAME) {
++ memcpy(txq->tx_bounce[index], bufaddr, frag_len);
++ bufaddr = txq->tx_bounce[index];
++
++ if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
++ swap_buffer(bufaddr, frag_len);
++ }
++
++ addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
++ DMA_TO_DEVICE);
++ if (dma_mapping_error(&fep->pdev->dev, addr)) {
++ dev_kfree_skb_any(skb);
++ if (net_ratelimit())
++ netdev_err(ndev, "Tx DMA memory map failed\n");
++ goto dma_mapping_error;
++ }
++
++ bdp->cbd_bufaddr = addr;
++ bdp->cbd_datlen = frag_len;
++ bdp->cbd_sc = status;
++ }
++
++ txq->cur_tx = bdp;
++
++ return 0;
++
++dma_mapping_error:
++ bdp = txq->cur_tx;
++ for (i = 0; i < frag; i++) {
++ bdp = fec_enet_get_nextdesc(bdp, fep, queue);
++ dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
++ bdp->cbd_datlen, DMA_TO_DEVICE);
++ }
++ return NETDEV_TX_OK;
++}
++
++static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
++ struct sk_buff *skb, struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ int nr_frags = skb_shinfo(skb)->nr_frags;
++ struct bufdesc *bdp, *last_bdp;
++ void *bufaddr;
++ dma_addr_t addr;
++ unsigned short status;
++ unsigned short buflen;
++ unsigned short queue;
++ unsigned int estatus = 0;
++ unsigned int index;
++ int entries_free;
++ int ret;
++
++ entries_free = fec_enet_get_free_txdesc_num(fep, txq);
++ if (entries_free < MAX_SKB_FRAGS + 1) {
++ dev_kfree_skb_any(skb);
++ if (net_ratelimit())
++ netdev_err(ndev, "NOT enough BD for SG!\n");
++ return NETDEV_TX_OK;
++ }
++
++ /* Protocol checksum off-load for TCP and UDP. */
++ if (fec_enet_clear_csum(skb, ndev)) {
++ dev_kfree_skb_any(skb);
++ return NETDEV_TX_OK;
++ }
++
++ /* Fill in a Tx ring entry */
++ bdp = txq->cur_tx;
++ status = bdp->cbd_sc;
++ status &= ~BD_ENET_TX_STATS;
++
++ /* Set buffer length and buffer pointer */
++ bufaddr = skb->data;
++ buflen = skb_headlen(skb);
++
++ queue = skb_get_queue_mapping(skb);
++ index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
++ if (((unsigned long) bufaddr) & fep->tx_align ||
++ fep->quirks & FEC_QUIRK_SWAP_FRAME) {
++ memcpy(txq->tx_bounce[index], skb->data, buflen);
++ bufaddr = txq->tx_bounce[index];
++
++ if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
++ swap_buffer(bufaddr, buflen);
++ }
++
++ /* Push the data cache so the CPM does not get stale memory data. */
++ addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
++ if (dma_mapping_error(&fep->pdev->dev, addr)) {
++ dev_kfree_skb_any(skb);
++ if (net_ratelimit())
++ netdev_err(ndev, "Tx DMA memory map failed\n");
++ return NETDEV_TX_OK;
++ }
++
++ if (nr_frags) {
++ ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
++ if (ret)
++ return ret;
++ } else {
++ status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
++ if (fep->bufdesc_ex) {
++ estatus = BD_ENET_TX_INT;
++ if (unlikely(skb_shinfo(skb)->tx_flags &
++ SKBTX_HW_TSTAMP && fep->hwts_tx_en))
++ estatus |= BD_ENET_TX_TS;
++ }
++ }
++
++ if (fep->bufdesc_ex) {
++
++ struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
++
++ if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
++ fep->hwts_tx_en))
++ skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
++
++ if (fep->quirks & FEC_QUIRK_HAS_AVB)
++ estatus |= FEC_TX_BD_FTYPE(queue);
++
++ if (skb->ip_summed == CHECKSUM_PARTIAL)
++ estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
++
++ ebdp->cbd_bdu = 0;
++ ebdp->cbd_esc = estatus;
++ }
++
++ last_bdp = txq->cur_tx;
++ index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
++ /* Save skb pointer */
++ txq->tx_skbuff[index] = skb;
++
++ bdp->cbd_datlen = buflen;
++ bdp->cbd_bufaddr = addr;
++
++ /* Send it on its way. Tell FEC it's ready, interrupt when done,
++ * it's the last BD of the frame, and to put the CRC on the end.
++ */
++ status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
++ bdp->cbd_sc = status;
++
++ /* If this was the last BD in the ring, start at the beginning again. */
++ bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
++
++ skb_tx_timestamp(skb);
++
++ txq->cur_tx = bdp;
++
++ /* Trigger transmission start */
++ writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
++
++ return 0;
++}
++
++static int
++fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
++ struct net_device *ndev,
++ struct bufdesc *bdp, int index, char *data,
++ int size, bool last_tcp, bool is_last)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
++ unsigned short queue = skb_get_queue_mapping(skb);
++ unsigned short status;
++ unsigned int estatus = 0;
++ dma_addr_t addr;
++
++ status = bdp->cbd_sc;
++ status &= ~BD_ENET_TX_STATS;
++
++ status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
++
++ if (((unsigned long) data) & fep->tx_align ||
++ fep->quirks & FEC_QUIRK_SWAP_FRAME) {
++ memcpy(txq->tx_bounce[index], data, size);
++ data = txq->tx_bounce[index];
++
++ if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
++ swap_buffer(data, size);
++ }
++
++ addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
++ if (dma_mapping_error(&fep->pdev->dev, addr)) {
++ dev_kfree_skb_any(skb);
++ if (net_ratelimit())
++ netdev_err(ndev, "Tx DMA memory map failed\n");
++ return NETDEV_TX_BUSY;
++ }
++
++ bdp->cbd_datlen = size;
++ bdp->cbd_bufaddr = addr;
++
++ if (fep->bufdesc_ex) {
++ if (fep->quirks & FEC_QUIRK_HAS_AVB)
++ estatus |= FEC_TX_BD_FTYPE(queue);
++ if (skb->ip_summed == CHECKSUM_PARTIAL)
++ estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
++ ebdp->cbd_bdu = 0;
++ ebdp->cbd_esc = estatus;
++ }
++
++ /* Handle the last BD specially */
++ if (last_tcp)
++ status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
++ if (is_last) {
++ status |= BD_ENET_TX_INTR;
++ if (fep->bufdesc_ex)
++ ebdp->cbd_esc |= BD_ENET_TX_INT;
++ }
++
++ bdp->cbd_sc = status;
++
++ return 0;
++}
++
++static int
++fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
++ struct sk_buff *skb, struct net_device *ndev,
++ struct bufdesc *bdp, int index)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
++ struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
++ unsigned short queue = skb_get_queue_mapping(skb);
++ void *bufaddr;
++ unsigned long dmabuf;
++ unsigned short status;
++ unsigned int estatus = 0;
++
++ status = bdp->cbd_sc;
++ status &= ~BD_ENET_TX_STATS;
++ status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
++
++ bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
++ dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
++ if (((unsigned long)bufaddr) & fep->tx_align ||
++ fep->quirks & FEC_QUIRK_SWAP_FRAME) {
++ memcpy(txq->tx_bounce[index], skb->data, hdr_len);
++ bufaddr = txq->tx_bounce[index];
++
++ if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
++ swap_buffer(bufaddr, hdr_len);
++
++ dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
++ hdr_len, DMA_TO_DEVICE);
++ if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
++ dev_kfree_skb_any(skb);
++ if (net_ratelimit())
++ netdev_err(ndev, "Tx DMA memory map failed\n");
++ return NETDEV_TX_BUSY;
++ }
++ }
++
++ bdp->cbd_bufaddr = dmabuf;
++ bdp->cbd_datlen = hdr_len;
++
++ if (fep->bufdesc_ex) {
++ if (fep->quirks & FEC_QUIRK_HAS_AVB)
++ estatus |= FEC_TX_BD_FTYPE(queue);
++ if (skb->ip_summed == CHECKSUM_PARTIAL)
++ estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
++ ebdp->cbd_bdu = 0;
++ ebdp->cbd_esc = estatus;
++ }
++
++ bdp->cbd_sc = status;
++
++ return 0;
++}
++
++static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
++ struct sk_buff *skb,
++ struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
++ int total_len, data_left;
++ struct bufdesc *bdp = txq->cur_tx;
++ unsigned short queue = skb_get_queue_mapping(skb);
++ struct tso_t tso;
++ unsigned int index = 0;
++ int ret;
++
++ if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
++ dev_kfree_skb_any(skb);
++ if (net_ratelimit())
++ netdev_err(ndev, "NOT enough BD for TSO!\n");
++ return NETDEV_TX_OK;
++ }
++
++ /* Protocol checksum off-load for TCP and UDP. */
++ if (fec_enet_clear_csum(skb, ndev)) {
++ dev_kfree_skb_any(skb);
++ return NETDEV_TX_OK;
++ }
++
++ /* Initialize the TSO handler, and prepare the first payload */
++ tso_start(skb, &tso);
++
++ total_len = skb->len - hdr_len;
++ while (total_len > 0) {
++ char *hdr;
++
++ index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
++ data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
++ total_len -= data_left;
++
++ /* prepare packet headers: MAC + IP + TCP */
++ hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
++ tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
++ ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
++ if (ret)
++ goto err_release;
++
++ while (data_left > 0) {
++ int size;
++
++ size = min_t(int, tso.size, data_left);
++ bdp = fec_enet_get_nextdesc(bdp, fep, queue);
++ index = fec_enet_get_bd_index(txq->tx_bd_base,
++ bdp, fep);
++ ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
++ bdp, index,
++ tso.data, size,
++ size == data_left,
++ total_len == 0);
++ if (ret)
++ goto err_release;
++
++ data_left -= size;
++ tso_build_data(skb, &tso, size);
++ }
++
++ bdp = fec_enet_get_nextdesc(bdp, fep, queue);
++ }
++
++ /* Save skb pointer */
++ txq->tx_skbuff[index] = skb;
++
++ skb_tx_timestamp(skb);
++ txq->cur_tx = bdp;
++
++ /* Trigger transmission start */
++ if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
++ !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
++ !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
++ !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
++ !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
++ writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
++
++ return 0;
++
++err_release:
++ /* TODO: Release all used data descriptors for TSO */
++ return ret;
++}
++
++static netdev_tx_t
++fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ int entries_free;
++ unsigned short queue;
++ struct fec_enet_priv_tx_q *txq;
++ struct netdev_queue *nq;
++ int ret;
++
++ queue = skb_get_queue_mapping(skb);
++ txq = fep->tx_queue[queue];
++ nq = netdev_get_tx_queue(ndev, queue);
++
++ if (skb_is_gso(skb))
++ ret = fec_enet_txq_submit_tso(txq, skb, ndev);
++ else
++ ret = fec_enet_txq_submit_skb(txq, skb, ndev);
++ if (ret)
++ return ret;
++
++ entries_free = fec_enet_get_free_txdesc_num(fep, txq);
++ if (entries_free <= txq->tx_stop_threshold)
++ netif_tx_stop_queue(nq);
++
++ return NETDEV_TX_OK;
++}
++
++/* Init RX & TX buffer descriptors
++ */
++static void fec_enet_bd_init(struct net_device *dev)
++{
++ struct fec_enet_private *fep = netdev_priv(dev);
++ struct fec_enet_priv_tx_q *txq;
++ struct fec_enet_priv_rx_q *rxq;
++ struct bufdesc *bdp;
++ unsigned int i;
++ unsigned int q;
++
++ for (q = 0; q < fep->num_rx_queues; q++) {
++ /* Initialize the receive buffer descriptors. */
++ rxq = fep->rx_queue[q];
++ bdp = rxq->rx_bd_base;
++
++ for (i = 0; i < rxq->rx_ring_size; i++) {
++
++ /* Initialize the BD for every fragment in the page. */
++ if (bdp->cbd_bufaddr)
++ bdp->cbd_sc = BD_ENET_RX_EMPTY;
++ else
++ bdp->cbd_sc = 0;
++ bdp = fec_enet_get_nextdesc(bdp, fep, q);
++ }
++
++ /* Set the last buffer to wrap */
++ bdp = fec_enet_get_prevdesc(bdp, fep, q);
++ bdp->cbd_sc |= BD_SC_WRAP;
++
++ rxq->cur_rx = rxq->rx_bd_base;
++ }
++
++ for (q = 0; q < fep->num_tx_queues; q++) {
++ /* ...and the same for transmit */
++ txq = fep->tx_queue[q];
++ bdp = txq->tx_bd_base;
++ txq->cur_tx = bdp;
++
++ for (i = 0; i < txq->tx_ring_size; i++) {
++ /* Initialize the BD for every fragment in the page. */
++ bdp->cbd_sc = 0;
++ if (txq->tx_skbuff[i]) {
++ dev_kfree_skb_any(txq->tx_skbuff[i]);
++ txq->tx_skbuff[i] = NULL;
++ }
++ bdp->cbd_bufaddr = 0;
++ bdp = fec_enet_get_nextdesc(bdp, fep, q);
++ }
++
++ /* Set the last buffer to wrap */
++ bdp = fec_enet_get_prevdesc(bdp, fep, q);
++ bdp->cbd_sc |= BD_SC_WRAP;
++ txq->dirty_tx = bdp;
++ }
++}
++
++static void fec_enet_active_rxring(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ int i;
++
++ for (i = 0; i < fep->num_rx_queues; i++)
++ writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
++}
++
++static void fec_enet_enable_ring(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct fec_enet_priv_tx_q *txq;
++ struct fec_enet_priv_rx_q *rxq;
++ int i;
++
++ for (i = 0; i < fep->num_rx_queues; i++) {
++ rxq = fep->rx_queue[i];
++ writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
++ writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
++
++ /* enable DMA1/2 */
++ if (i)
++ writel(RCMR_MATCHEN | RCMR_CMP(i),
++ fep->hwp + FEC_RCMR(i));
++ }
++
++ for (i = 0; i < fep->num_tx_queues; i++) {
++ txq = fep->tx_queue[i];
++ writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
++
++ /* enable DMA1/2 */
++ if (i)
++ writel(DMA_CLASS_EN | IDLE_SLOPE(i),
++ fep->hwp + FEC_DMA_CFG(i));
++ }
++}
++
++static void fec_enet_reset_skb(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct fec_enet_priv_tx_q *txq;
++ int i, j;
++
++ for (i = 0; i < fep->num_tx_queues; i++) {
++ txq = fep->tx_queue[i];
++
++ for (j = 0; j < txq->tx_ring_size; j++) {
++ if (txq->tx_skbuff[j]) {
++ dev_kfree_skb_any(txq->tx_skbuff[j]);
++ txq->tx_skbuff[j] = NULL;
++ }
++ }
++ }
++}
++
++/*
++ * This function is called to start or restart the FEC during a link
++ * change, transmit timeout, or to reconfigure the FEC. The network
++ * packet processing for this device must be stopped before this call.
++ */
++static void
++fec_restart(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ u32 val;
++ u32 temp_mac[2];
++ u32 rcntl = OPT_FRAME_SIZE | 0x04;
++ u32 ecntl = 0x2; /* ETHEREN */
++
++ /* Whack a reset. We should wait for this.
++ * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
++ * instead of reset MAC itself.
++ */
++ if (fep->quirks & FEC_QUIRK_HAS_AVB) {
++ writel(0, fep->hwp + FEC_ECNTRL);
++ } else {
++ writel(1, fep->hwp + FEC_ECNTRL);
++ udelay(10);
++ }
++
++ /*
++ * enet-mac reset will reset mac address registers too,
++ * so need to reconfigure it.
++ */
++ if (fep->quirks & FEC_QUIRK_ENET_MAC) {
++ memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
++ writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
++ writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
++ }
++
++ /* Clear any outstanding interrupt. */
++ writel(0xffffffff, fep->hwp + FEC_IEVENT);
++
++ fec_enet_bd_init(ndev);
++
++ fec_enet_enable_ring(ndev);
++
++ /* Reset tx SKB buffers. */
++ fec_enet_reset_skb(ndev);
++
++ /* Enable MII mode */
++ if (fep->full_duplex == DUPLEX_FULL) {
++ /* FD enable */
++ writel(0x04, fep->hwp + FEC_X_CNTRL);
++ } else {
++ /* No Rcv on Xmit */
++ rcntl |= 0x02;
++ writel(0x0, fep->hwp + FEC_X_CNTRL);
++ }
++
++ /* Set MII speed */
++ writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
++
++#if !defined(CONFIG_M5272)
++ /* set RX checksum */
++ val = readl(fep->hwp + FEC_RACC);
++ if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
++ val |= FEC_RACC_OPTIONS;
++ else
++ val &= ~FEC_RACC_OPTIONS;
++ writel(val, fep->hwp + FEC_RACC);
++#endif
++
++ /*
++ * The phy interface and speed need to get configured
++ * differently on enet-mac.
++ */
++ if (fep->quirks & FEC_QUIRK_ENET_MAC) {
++ /* Enable flow control and length check */
++ rcntl |= 0x40000000 | 0x00000020;
++
++ /* RGMII, RMII or MII */
++ if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
++ fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
++ fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
++ fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
++ rcntl |= (1 << 6);
++ else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
++ rcntl |= (1 << 8);
++ else
++ rcntl &= ~(1 << 8);
++
++ /* 1G, 100M or 10M */
++ if (fep->phy_dev) {
++ if (fep->phy_dev->speed == SPEED_1000)
++ ecntl |= (1 << 5);
++ else if (fep->phy_dev->speed == SPEED_100)
++ rcntl &= ~(1 << 9);
++ else
++ rcntl |= (1 << 9);
++ }
++ } else {
++#ifdef FEC_MIIGSK_ENR
++ if (fep->quirks & FEC_QUIRK_USE_GASKET) {
++ u32 cfgr;
++ /* disable the gasket and wait */
++ writel(0, fep->hwp + FEC_MIIGSK_ENR);
++ while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
++ udelay(1);
++
++ /*
++ * configure the gasket:
++ * RMII, 50 MHz, no loopback, no echo
++ * MII, 25 MHz, no loopback, no echo
++ */
++ cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
++ ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
++ if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
++ cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
++ writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
++
++ /* re-enable the gasket */
++ writel(2, fep->hwp + FEC_MIIGSK_ENR);
++ }
++#endif
++ }
++
++#if !defined(CONFIG_M5272)
++ /* enable pause frame*/
++ if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
++ ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
++ fep->phy_dev && fep->phy_dev->pause)) {
++ rcntl |= FEC_ENET_FCE;
++
++ /* set FIFO threshold parameter to reduce overrun */
++ writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
++ writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
++ writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
++ writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
++
++ /* OPD */
++ writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
++ } else {
++ rcntl &= ~FEC_ENET_FCE;
++ }
++#endif /* !defined(CONFIG_M5272) */
++
++ writel(rcntl, fep->hwp + FEC_R_CNTRL);
++
++ /* Setup multicast filter. */
++ set_multicast_list(ndev);
++#ifndef CONFIG_M5272
++ writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
++ writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
++#endif
++
++ if (fep->quirks & FEC_QUIRK_ENET_MAC) {
++ /* enable ENET endian swap */
++ ecntl |= (1 << 8);
++ /* enable ENET store and forward mode */
++ writel(1 << 8, fep->hwp + FEC_X_WMRK);
++ }
++
++ if (fep->bufdesc_ex)
++ ecntl |= (1 << 4);
++
++#ifndef CONFIG_M5272
++ /* Enable the MIB statistic event counters */
++ writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
++#endif
++
++ /* And last, enable the transmit and receive processing */
++ writel(ecntl, fep->hwp + FEC_ECNTRL);
++ fec_enet_active_rxring(ndev);
++
++ if (fep->bufdesc_ex)
++ fec_ptp_start_cyclecounter(ndev);
++
++ /* Enable interrupts we wish to service */
++ if (fep->link)
++ writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
++ else
++ writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
++
++ /* Init the interrupt coalescing */
++ fec_enet_itr_coal_init(ndev);
++
++}
++
++static void
++fec_stop(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
++ u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
++ u32 val;
++
++ /* We cannot expect a graceful transmit stop without link !!! */
++ if (fep->link) {
++ writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
++ udelay(10);
++ if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
++ netdev_err(ndev, "Graceful transmit stop did not complete!\n");
++ }
++
++ /* Whack a reset. We should wait for this.
++ * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
++ * instead of reset MAC itself.
++ */
++ if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
++ if (fep->quirks & FEC_QUIRK_HAS_AVB) {
++ writel(0, fep->hwp + FEC_ECNTRL);
++ } else {
++ writel(1, fep->hwp + FEC_ECNTRL);
++ udelay(10);
++ }
++ writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
++ } else {
++ writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
++ val = readl(fep->hwp + FEC_ECNTRL);
++ val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
++ writel(val, fep->hwp + FEC_ECNTRL);
++
++ if (pdata && pdata->sleep_mode_enable)
++ pdata->sleep_mode_enable(true);
++ }
++ writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
++
++ /* We have to keep ENET enabled to have MII interrupt stay working */
++ if (fep->quirks & FEC_QUIRK_ENET_MAC &&
++ !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
++ writel(2, fep->hwp + FEC_ECNTRL);
++ writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
++ }
++}
++
++
++static void
++fec_timeout(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++
++ fec_dump(ndev);
++
++ ndev->stats.tx_errors++;
++
++ schedule_work(&fep->tx_timeout_work);
++}
++
++static void fec_enet_timeout_work(struct work_struct *work)
++{
++ struct fec_enet_private *fep =
++ container_of(work, struct fec_enet_private, tx_timeout_work);
++ struct net_device *ndev = fep->netdev;
++
++ rtnl_lock();
++ if (netif_device_present(ndev) || netif_running(ndev)) {
++ napi_disable(&fep->napi);
++ netif_tx_lock_bh(ndev);
++ fec_restart(ndev);
++ netif_wake_queue(ndev);
++ netif_tx_unlock_bh(ndev);
++ napi_enable(&fep->napi);
++ }
++ rtnl_unlock();
++}
++
++static void
++fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
++ struct skb_shared_hwtstamps *hwtstamps)
++{
++ unsigned long flags;
++ u64 ns;
++
++ spin_lock_irqsave(&fep->tmreg_lock, flags);
++ ns = timecounter_cyc2time(&fep->tc, ts);
++ spin_unlock_irqrestore(&fep->tmreg_lock, flags);
++
++ memset(hwtstamps, 0, sizeof(*hwtstamps));
++ hwtstamps->hwtstamp = ns_to_ktime(ns);
++}
++
++static void
++fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
++{
++ struct fec_enet_private *fep;
++ struct bufdesc *bdp;
++ unsigned short status;
++ struct sk_buff *skb;
++ struct fec_enet_priv_tx_q *txq;
++ struct netdev_queue *nq;
++ int index = 0;
++ int entries_free;
++
++ fep = netdev_priv(ndev);
++
++ queue_id = FEC_ENET_GET_QUQUE(queue_id);
++
++ txq = fep->tx_queue[queue_id];
++ /* get next bdp of dirty_tx */
++ nq = netdev_get_tx_queue(ndev, queue_id);
++ bdp = txq->dirty_tx;
++
++ /* get next bdp of dirty_tx */
++ bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
++
++ while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
++
++ /* current queue is empty */
++ if (bdp == txq->cur_tx)
++ break;
++
++ index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
++
++ skb = txq->tx_skbuff[index];
++ txq->tx_skbuff[index] = NULL;
++ if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
++ dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
++ bdp->cbd_datlen, DMA_TO_DEVICE);
++ bdp->cbd_bufaddr = 0;
++ if (!skb) {
++ bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
++ continue;
++ }
++
++ /* Check for errors. */
++ if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
++ BD_ENET_TX_RL | BD_ENET_TX_UN |
++ BD_ENET_TX_CSL)) {
++ ndev->stats.tx_errors++;
++ if (status & BD_ENET_TX_HB) /* No heartbeat */
++ ndev->stats.tx_heartbeat_errors++;
++ if (status & BD_ENET_TX_LC) /* Late collision */
++ ndev->stats.tx_window_errors++;
++ if (status & BD_ENET_TX_RL) /* Retrans limit */
++ ndev->stats.tx_aborted_errors++;
++ if (status & BD_ENET_TX_UN) /* Underrun */
++ ndev->stats.tx_fifo_errors++;
++ if (status & BD_ENET_TX_CSL) /* Carrier lost */
++ ndev->stats.tx_carrier_errors++;
++ } else {
++ ndev->stats.tx_packets++;
++ ndev->stats.tx_bytes += skb->len;
++ }
++
++ if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
++ fep->bufdesc_ex) {
++ struct skb_shared_hwtstamps shhwtstamps;
++ struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
++
++ fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
++ skb_tstamp_tx(skb, &shhwtstamps);
++ }
++
++ /* Deferred means some collisions occurred during transmit,
++ * but we eventually sent the packet OK.
++ */
++ if (status & BD_ENET_TX_DEF)
++ ndev->stats.collisions++;
++
++ /* Free the sk buffer associated with this last transmit */
++ dev_kfree_skb_any(skb);
++
++ txq->dirty_tx = bdp;
++
++ /* Update pointer to next buffer descriptor to be transmitted */
++ bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
++
++ /* Since we have freed up a buffer, the ring is no longer full
++ */
++ if (netif_queue_stopped(ndev)) {
++ entries_free = fec_enet_get_free_txdesc_num(fep, txq);
++ if (entries_free >= txq->tx_wake_threshold)
++ netif_tx_wake_queue(nq);
++ }
++ }
++
++ /* ERR006538: Keep the transmitter going */
++ if (bdp != txq->cur_tx &&
++ readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
++ writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
++}
++
++static void
++fec_enet_tx(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ u16 queue_id;
++ /* First process class A queue, then Class B and Best Effort queue */
++ for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
++ clear_bit(queue_id, &fep->work_tx);
++ fec_enet_tx_queue(ndev, queue_id);
++ }
++ return;
++}
++
++static int
++fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ int off;
++
++ off = ((unsigned long)skb->data) & fep->rx_align;
++ if (off)
++ skb_reserve(skb, fep->rx_align + 1 - off);
++
++ bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
++ FEC_ENET_RX_FRSIZE - fep->rx_align,
++ DMA_FROM_DEVICE);
++ if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
++ if (net_ratelimit())
++ netdev_err(ndev, "Rx DMA memory map failed\n");
++ return -ENOMEM;
++ }
++
++ return 0;
++}
++
++static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
++ struct bufdesc *bdp, u32 length, bool swap)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct sk_buff *new_skb;
++
++ if (length > fep->rx_copybreak)
++ return false;
++
++ new_skb = netdev_alloc_skb(ndev, length);
++ if (!new_skb)
++ return false;
++
++ dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
++ FEC_ENET_RX_FRSIZE - fep->rx_align,
++ DMA_FROM_DEVICE);
++ if (!swap)
++ memcpy(new_skb->data, (*skb)->data, length);
++ else
++ swap_buffer2(new_skb->data, (*skb)->data, length);
++ *skb = new_skb;
++
++ return true;
++}
++
++/* During a receive, the cur_rx points to the current incoming buffer.
++ * When we update through the ring, if the next incoming buffer has
++ * not been given to the system, we just set the empty indicator,
++ * effectively tossing the packet.
++ */
++static int
++fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct fec_enet_priv_rx_q *rxq;
++ struct bufdesc *bdp;
++ unsigned short status;
++ struct sk_buff *skb_new = NULL;
++ struct sk_buff *skb;
++ ushort pkt_len;
++ __u8 *data;
++ int pkt_received = 0;
++ struct bufdesc_ex *ebdp = NULL;
++ bool vlan_packet_rcvd = false;
++ u16 vlan_tag;
++ int index = 0;
++ bool is_copybreak;
++ bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
++
++#ifdef CONFIG_M532x
++ flush_cache_all();
++#endif
++ queue_id = FEC_ENET_GET_QUQUE(queue_id);
++ rxq = fep->rx_queue[queue_id];
++
++ /* First, grab all of the stats for the incoming packet.
++ * These get messed up if we get called due to a busy condition.
++ */
++ bdp = rxq->cur_rx;
++
++ while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
++
++ if (pkt_received >= budget)
++ break;
++ pkt_received++;
++
++ /* Since we have allocated space to hold a complete frame,
++ * the last indicator should be set.
++ */
++ if ((status & BD_ENET_RX_LAST) == 0)
++ netdev_err(ndev, "rcv is not +last\n");
++
++ writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
++
++ /* Check for errors. */
++ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
++ BD_ENET_RX_CR | BD_ENET_RX_OV)) {
++ ndev->stats.rx_errors++;
++ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
++ /* Frame too long or too short. */
++ ndev->stats.rx_length_errors++;
++ }
++ if (status & BD_ENET_RX_NO) /* Frame alignment */
++ ndev->stats.rx_frame_errors++;
++ if (status & BD_ENET_RX_CR) /* CRC Error */
++ ndev->stats.rx_crc_errors++;
++ if (status & BD_ENET_RX_OV) /* FIFO overrun */
++ ndev->stats.rx_fifo_errors++;
++ }
++
++ /* Report late collisions as a frame error.
++ * On this error, the BD is closed, but we don't know what we
++ * have in the buffer. So, just drop this frame on the floor.
++ */
++ if (status & BD_ENET_RX_CL) {
++ ndev->stats.rx_errors++;
++ ndev->stats.rx_frame_errors++;
++ goto rx_processing_done;
++ }
++
++ /* Process the incoming frame. */
++ ndev->stats.rx_packets++;
++ pkt_len = bdp->cbd_datlen;
++ ndev->stats.rx_bytes += pkt_len;
++
++ index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
++ skb = rxq->rx_skbuff[index];
++
++ /* The packet length includes FCS, but we don't want to
++ * include that when passing upstream as it messes up
++ * bridging applications.
++ */
++ is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
++ need_swap);
++ if (!is_copybreak) {
++ skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
++ if (unlikely(!skb_new)) {
++ ndev->stats.rx_dropped++;
++ goto rx_processing_done;
++ }
++ dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
++ FEC_ENET_RX_FRSIZE - fep->rx_align,
++ DMA_FROM_DEVICE);
++ }
++
++ prefetch(skb->data - NET_IP_ALIGN);
++ skb_put(skb, pkt_len - 4);
++ data = skb->data;
++ if (!is_copybreak && need_swap)
++ swap_buffer(data, pkt_len);
++
++ /* Extract the enhanced buffer descriptor */
++ ebdp = NULL;
++ if (fep->bufdesc_ex)
++ ebdp = (struct bufdesc_ex *)bdp;
++
++ /* If this is a VLAN packet remove the VLAN Tag */
++ vlan_packet_rcvd = false;
++ if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
++ fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
++ /* Push and remove the vlan tag */
++ struct vlan_hdr *vlan_header =
++ (struct vlan_hdr *) (data + ETH_HLEN);
++ vlan_tag = ntohs(vlan_header->h_vlan_TCI);
++
++ vlan_packet_rcvd = true;
++
++ memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
++ skb_pull(skb, VLAN_HLEN);
++ }
++
++ skb->protocol = eth_type_trans(skb, ndev);
++
++ /* Get receive timestamp from the skb */
++ if (fep->hwts_rx_en && fep->bufdesc_ex)
++ fec_enet_hwtstamp(fep, ebdp->ts,
++ skb_hwtstamps(skb));
++
++ if (fep->bufdesc_ex &&
++ (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
++ if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
++ /* don't check it */
++ skb->ip_summed = CHECKSUM_UNNECESSARY;
++ } else {
++ skb_checksum_none_assert(skb);
++ }
++ }
++
++ /* Handle received VLAN packets */
++ if (vlan_packet_rcvd)
++ __vlan_hwaccel_put_tag(skb,
++ htons(ETH_P_8021Q),
++ vlan_tag);
++
++ napi_gro_receive(&fep->napi, skb);
++
++ if (is_copybreak) {
++ dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
++ FEC_ENET_RX_FRSIZE - fep->rx_align,
++ DMA_FROM_DEVICE);
++ } else {
++ rxq->rx_skbuff[index] = skb_new;
++ fec_enet_new_rxbdp(ndev, bdp, skb_new);
++ }
++
++rx_processing_done:
++ /* Clear the status flags for this buffer */
++ status &= ~BD_ENET_RX_STATS;
++
++ /* Mark the buffer empty */
++ status |= BD_ENET_RX_EMPTY;
++ bdp->cbd_sc = status;
++
++ if (fep->bufdesc_ex) {
++ struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
++
++ ebdp->cbd_esc = BD_ENET_RX_INT;
++ ebdp->cbd_prot = 0;
++ ebdp->cbd_bdu = 0;
++ }
++
++ /* Update BD pointer to next entry */
++ bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
++
++ /* Doing this here will keep the FEC running while we process
++ * incoming frames. On a heavily loaded network, we should be
++ * able to keep up at the expense of system resources.
++ */
++ writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
++ }
++ rxq->cur_rx = bdp;
++ return pkt_received;
++}
++
++static int
++fec_enet_rx(struct net_device *ndev, int budget)
++{
++ int pkt_received = 0;
++ u16 queue_id;
++ struct fec_enet_private *fep = netdev_priv(ndev);
++
++ for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
++ clear_bit(queue_id, &fep->work_rx);
++ pkt_received += fec_enet_rx_queue(ndev,
++ budget - pkt_received, queue_id);
++ }
++ return pkt_received;
++}
++
++static bool
++fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
++{
++ if (int_events == 0)
++ return false;
++
++ if (int_events & FEC_ENET_RXF)
++ fep->work_rx |= (1 << 2);
++ if (int_events & FEC_ENET_RXF_1)
++ fep->work_rx |= (1 << 0);
++ if (int_events & FEC_ENET_RXF_2)
++ fep->work_rx |= (1 << 1);
++
++ if (int_events & FEC_ENET_TXF)
++ fep->work_tx |= (1 << 2);
++ if (int_events & FEC_ENET_TXF_1)
++ fep->work_tx |= (1 << 0);
++ if (int_events & FEC_ENET_TXF_2)
++ fep->work_tx |= (1 << 1);
++
++ return true;
++}
++
++static irqreturn_t
++fec_enet_interrupt(int irq, void *dev_id)
++{
++ struct net_device *ndev = dev_id;
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ uint int_events;
++ irqreturn_t ret = IRQ_NONE;
++
++ int_events = readl(fep->hwp + FEC_IEVENT);
++ writel(int_events, fep->hwp + FEC_IEVENT);
++ fec_enet_collect_events(fep, int_events);
++
++ if ((fep->work_tx || fep->work_rx) && fep->link) {
++ ret = IRQ_HANDLED;
++
++ if (napi_schedule_prep(&fep->napi)) {
++ /* Disable the NAPI interrupts */
++ writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
++ __napi_schedule(&fep->napi);
++ }
++ }
++
++ if (int_events & FEC_ENET_MII) {
++ ret = IRQ_HANDLED;
++ complete(&fep->mdio_done);
++ }
++
++ if (fep->ptp_clock)
++ fec_ptp_check_pps_event(fep);
++
++ return ret;
++}
++
++static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
++{
++ struct net_device *ndev = napi->dev;
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ int pkts;
++
++ pkts = fec_enet_rx(ndev, budget);
++
++ fec_enet_tx(ndev);
++
++ if (pkts < budget) {
++ napi_complete(napi);
++ writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
++ }
++ return pkts;
++}
++
++/* ------------------------------------------------------------------------- */
++static void fec_get_mac(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
++ unsigned char *iap, tmpaddr[ETH_ALEN];
++
++ /*
++ * try to get mac address in following order:
++ *
++ * 1) module parameter via kernel command line in form
++ * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
++ */
++ iap = macaddr;
++
++ /*
++ * 2) from device tree data
++ */
++ if (!is_valid_ether_addr(iap)) {
++ struct device_node *np = fep->pdev->dev.of_node;
++ if (np) {
++ const char *mac = of_get_mac_address(np);
++ if (mac)
++ iap = (unsigned char *) mac;
++ }
++ }
++
++ /*
++ * 3) from flash or fuse (via platform data)
++ */
++ if (!is_valid_ether_addr(iap)) {
++#ifdef CONFIG_M5272
++ if (FEC_FLASHMAC)
++ iap = (unsigned char *)FEC_FLASHMAC;
++#else
++ if (pdata)
++ iap = (unsigned char *)&pdata->mac;
++#endif
++ }
++
++ /*
++ * 4) FEC mac registers set by bootloader
++ */
++ if (!is_valid_ether_addr(iap)) {
++ *((__be32 *) &tmpaddr[0]) =
++ cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
++ *((__be16 *) &tmpaddr[4]) =
++ cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
++ iap = &tmpaddr[0];
++ }
++
++ /*
++ * 5) random mac address
++ */
++ if (!is_valid_ether_addr(iap)) {
++ /* Report it and use a random ethernet address instead */
++ netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
++ eth_hw_addr_random(ndev);
++ netdev_info(ndev, "Using random MAC address: %pM\n",
++ ndev->dev_addr);
++ return;
++ }
++
++ memcpy(ndev->dev_addr, iap, ETH_ALEN);
++
++ /* Adjust MAC if using macaddr */
++ if (iap == macaddr)
++ ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
++}
++
++/* ------------------------------------------------------------------------- */
++
++/*
++ * Phy section
++ */
++static void fec_enet_adjust_link(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct phy_device *phy_dev = fep->phy_dev;
++ int status_change = 0;
++
++ /* Prevent a state halted on mii error */
++ if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
++ phy_dev->state = PHY_RESUMING;
++ return;
++ }
++
++ /*
++ * If the netdev is down, or is going down, we're not interested
++ * in link state events, so just mark our idea of the link as down
++ * and ignore the event.
++ */
++ if (!netif_running(ndev) || !netif_device_present(ndev)) {
++ fep->link = 0;
++ } else if (phy_dev->link) {
++ if (!fep->link) {
++ fep->link = phy_dev->link;
++ status_change = 1;
++ }
++
++ if (fep->full_duplex != phy_dev->duplex) {
++ fep->full_duplex = phy_dev->duplex;
++ status_change = 1;
++ }
++
++ if (phy_dev->speed != fep->speed) {
++ fep->speed = phy_dev->speed;
++ status_change = 1;
++ }
++
++ /* if any of the above changed restart the FEC */
++ if (status_change) {
++ napi_disable(&fep->napi);
++ netif_tx_lock_bh(ndev);
++ fec_restart(ndev);
++ netif_wake_queue(ndev);
++ netif_tx_unlock_bh(ndev);
++ napi_enable(&fep->napi);
++ }
++ } else {
++ if (fep->link) {
++ napi_disable(&fep->napi);
++ netif_tx_lock_bh(ndev);
++ fec_stop(ndev);
++ netif_tx_unlock_bh(ndev);
++ napi_enable(&fep->napi);
++ fep->link = phy_dev->link;
++ status_change = 1;
++ }
++ }
++
++ if (status_change)
++ phy_print_status(phy_dev);
++}
++
++static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
++{
++ struct fec_enet_private *fep = bus->priv;
++ unsigned long time_left;
++
++ fep->mii_timeout = 0;
++ init_completion(&fep->mdio_done);
++
++ /* start a read op */
++ writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
++ FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
++ FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
++
++ /* wait for end of transfer */
++ time_left = wait_for_completion_timeout(&fep->mdio_done,
++ usecs_to_jiffies(FEC_MII_TIMEOUT));
++ if (time_left == 0) {
++ fep->mii_timeout = 1;
++ netdev_err(fep->netdev, "MDIO read timeout\n");
++ return -ETIMEDOUT;
++ }
++
++ /* return value */
++ return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
++}
++
++static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
++ u16 value)
++{
++ struct fec_enet_private *fep = bus->priv;
++ unsigned long time_left;
++
++ fep->mii_timeout = 0;
++ init_completion(&fep->mdio_done);
++
++ /* start a write op */
++ writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
++ FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
++ FEC_MMFR_TA | FEC_MMFR_DATA(value),
++ fep->hwp + FEC_MII_DATA);
++
++ /* wait for end of transfer */
++ time_left = wait_for_completion_timeout(&fep->mdio_done,
++ usecs_to_jiffies(FEC_MII_TIMEOUT));
++ if (time_left == 0) {
++ fep->mii_timeout = 1;
++ netdev_err(fep->netdev, "MDIO write timeout\n");
++ return -ETIMEDOUT;
++ }
++
++ return 0;
++}
++
++static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ int ret;
++
++ if (enable) {
++ ret = clk_prepare_enable(fep->clk_ahb);
++ if (ret)
++ return ret;
++ ret = clk_prepare_enable(fep->clk_ipg);
++ if (ret)
++ goto failed_clk_ipg;
++ if (fep->clk_enet_out) {
++ ret = clk_prepare_enable(fep->clk_enet_out);
++ if (ret)
++ goto failed_clk_enet_out;
++ }
++ if (fep->clk_ptp) {
++ mutex_lock(&fep->ptp_clk_mutex);
++ ret = clk_prepare_enable(fep->clk_ptp);
++ if (ret) {
++ mutex_unlock(&fep->ptp_clk_mutex);
++ goto failed_clk_ptp;
++ } else {
++ fep->ptp_clk_on = true;
++ }
++ mutex_unlock(&fep->ptp_clk_mutex);
++ }
++ if (fep->clk_ref) {
++ ret = clk_prepare_enable(fep->clk_ref);
++ if (ret)
++ goto failed_clk_ref;
++ }
++ } else {
++ clk_disable_unprepare(fep->clk_ahb);
++ clk_disable_unprepare(fep->clk_ipg);
++ if (fep->clk_enet_out)
++ clk_disable_unprepare(fep->clk_enet_out);
++ if (fep->clk_ptp) {
++ mutex_lock(&fep->ptp_clk_mutex);
++ clk_disable_unprepare(fep->clk_ptp);
++ fep->ptp_clk_on = false;
++ mutex_unlock(&fep->ptp_clk_mutex);
++ }
++ if (fep->clk_ref)
++ clk_disable_unprepare(fep->clk_ref);
++ }
++
++ return 0;
++
++failed_clk_ref:
++ if (fep->clk_ref)
++ clk_disable_unprepare(fep->clk_ref);
++failed_clk_ptp:
++ if (fep->clk_enet_out)
++ clk_disable_unprepare(fep->clk_enet_out);
++failed_clk_enet_out:
++ clk_disable_unprepare(fep->clk_ipg);
++failed_clk_ipg:
++ clk_disable_unprepare(fep->clk_ahb);
++
++ return ret;
++}
++
++static int fec_enet_mii_probe(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct phy_device *phy_dev = NULL;
++ char mdio_bus_id[MII_BUS_ID_SIZE];
++ char phy_name[MII_BUS_ID_SIZE + 3];
++ int phy_id;
++ int dev_id = fep->dev_id;
++
++ fep->phy_dev = NULL;
++
++ if (fep->phy_node) {
++ phy_dev = of_phy_connect(ndev, fep->phy_node,
++ &fec_enet_adjust_link, 0,
++ fep->phy_interface);
++ if (!phy_dev)
++ return -ENODEV;
++ } else {
++ /* check for attached phy */
++ for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
++ if ((fep->mii_bus->phy_mask & (1 << phy_id)))
++ continue;
++ if (fep->mii_bus->phy_map[phy_id] == NULL)
++ continue;
++ if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
++ continue;
++ if (dev_id--)
++ continue;
++ strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
++ break;
++ }
++
++ if (phy_id >= PHY_MAX_ADDR) {
++ netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
++ strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
++ phy_id = 0;
++ }
++
++ snprintf(phy_name, sizeof(phy_name),
++ PHY_ID_FMT, mdio_bus_id, phy_id);
++ phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
++ fep->phy_interface);
++ }
++
++ if (IS_ERR(phy_dev)) {
++ netdev_err(ndev, "could not attach to PHY\n");
++ return PTR_ERR(phy_dev);
++ }
++
++ /* mask with MAC supported features */
++ if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
++ phy_dev->supported &= PHY_GBIT_FEATURES;
++ phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
++#if !defined(CONFIG_M5272)
++ phy_dev->supported |= SUPPORTED_Pause;
++#endif
++ }
++ else
++ phy_dev->supported &= PHY_BASIC_FEATURES;
++
++ phy_dev->advertising = phy_dev->supported;
++
++ fep->phy_dev = phy_dev;
++ fep->link = 0;
++ fep->full_duplex = 0;
++
++ netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
++ fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
++ fep->phy_dev->irq);
++
++ return 0;
++}
++
++static int fec_enet_mii_init(struct platform_device *pdev)
++{
++ static struct mii_bus *fec0_mii_bus;
++ struct net_device *ndev = platform_get_drvdata(pdev);
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct device_node *node;
++ int err = -ENXIO, i;
++ u32 mii_speed, holdtime;
++
++ /*
++ * The i.MX28 dual fec interfaces are not equal.
++ * Here are the differences:
++ *
++ * - fec0 supports MII & RMII modes while fec1 only supports RMII
++ * - fec0 acts as the 1588 time master while fec1 is slave
++ * - external phys can only be configured by fec0
++ *
++ * That is to say fec1 can not work independently. It only works
++ * when fec0 is working. The reason behind this design is that the
++ * second interface is added primarily for Switch mode.
++ *
++ * Because of the last point above, both phys are attached on fec0
++ * mdio interface in board design, and need to be configured by
++ * fec0 mii_bus.
++ */
++ if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
++ /* fec1 uses fec0 mii_bus */
++ if (mii_cnt && fec0_mii_bus) {
++ fep->mii_bus = fec0_mii_bus;
++ mii_cnt++;
++ return 0;
++ }
++ return -ENOENT;
++ }
++
++ fep->mii_timeout = 0;
++
++ /*
++ * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
++ *
++ * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
++ * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
++ * Reference Manual has an error on this, and gets fixed on i.MX6Q
++ * document.
++ */
++ mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
++ if (fep->quirks & FEC_QUIRK_ENET_MAC)
++ mii_speed--;
++ if (mii_speed > 63) {
++ dev_err(&pdev->dev,
++ "fec clock (%lu) to fast to get right mii speed\n",
++ clk_get_rate(fep->clk_ipg));
++ err = -EINVAL;
++ goto err_out;
++ }
++
++ /*
++ * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
++ * MII_SPEED) register that defines the MDIO output hold time. Earlier
++ * versions are RAZ there, so just ignore the difference and write the
++ * register always.
++ * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
++ * HOLDTIME + 1 is the number of clk cycles the fec is holding the
++ * output.
++ * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
++ * Given that ceil(clkrate / 5000000) <= 64, the calculation for
++ * holdtime cannot result in a value greater than 3.
++ */
++ holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
++
++ fep->phy_speed = mii_speed << 1 | holdtime << 8;
++
++ writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
++
++ fep->mii_bus = mdiobus_alloc();
++ if (fep->mii_bus == NULL) {
++ err = -ENOMEM;
++ goto err_out;
++ }
++
++ fep->mii_bus->name = "fec_enet_mii_bus";
++ fep->mii_bus->read = fec_enet_mdio_read;
++ fep->mii_bus->write = fec_enet_mdio_write;
++ snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
++ pdev->name, fep->dev_id + 1);
++ fep->mii_bus->priv = fep;
++ fep->mii_bus->parent = &pdev->dev;
++
++ fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
++ if (!fep->mii_bus->irq) {
++ err = -ENOMEM;
++ goto err_out_free_mdiobus;
++ }
++
++ for (i = 0; i < PHY_MAX_ADDR; i++)
++ fep->mii_bus->irq[i] = PHY_POLL;
++
++ node = of_get_child_by_name(pdev->dev.of_node, "mdio");
++ if (node) {
++ err = of_mdiobus_register(fep->mii_bus, node);
++ of_node_put(node);
++ } else {
++ err = mdiobus_register(fep->mii_bus);
++ }
++
++ if (err)
++ goto err_out_free_mdio_irq;
++
++ mii_cnt++;
++
++ /* save fec0 mii_bus */
++ if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
++ fec0_mii_bus = fep->mii_bus;
++
++ return 0;
++
++err_out_free_mdio_irq:
++ kfree(fep->mii_bus->irq);
++err_out_free_mdiobus:
++ mdiobus_free(fep->mii_bus);
++err_out:
++ return err;
++}
++
++static void fec_enet_mii_remove(struct fec_enet_private *fep)
++{
++ if (--mii_cnt == 0) {
++ mdiobus_unregister(fep->mii_bus);
++ kfree(fep->mii_bus->irq);
++ mdiobus_free(fep->mii_bus);
++ }
++}
++
++static int fec_enet_get_settings(struct net_device *ndev,
++ struct ethtool_cmd *cmd)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct phy_device *phydev = fep->phy_dev;
++
++ if (!phydev)
++ return -ENODEV;
++
++ return phy_ethtool_gset(phydev, cmd);
++}
++
++static int fec_enet_set_settings(struct net_device *ndev,
++ struct ethtool_cmd *cmd)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct phy_device *phydev = fep->phy_dev;
++
++ if (!phydev)
++ return -ENODEV;
++
++ return phy_ethtool_sset(phydev, cmd);
++}
++
++static void fec_enet_get_drvinfo(struct net_device *ndev,
++ struct ethtool_drvinfo *info)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++
++ strlcpy(info->driver, fep->pdev->dev.driver->name,
++ sizeof(info->driver));
++ strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
++ strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
++}
++
++static int fec_enet_get_ts_info(struct net_device *ndev,
++ struct ethtool_ts_info *info)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++
++ if (fep->bufdesc_ex) {
++
++ info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
++ SOF_TIMESTAMPING_RX_SOFTWARE |
++ SOF_TIMESTAMPING_SOFTWARE |
++ SOF_TIMESTAMPING_TX_HARDWARE |
++ SOF_TIMESTAMPING_RX_HARDWARE |
++ SOF_TIMESTAMPING_RAW_HARDWARE;
++ if (fep->ptp_clock)
++ info->phc_index = ptp_clock_index(fep->ptp_clock);
++ else
++ info->phc_index = -1;
++
++ info->tx_types = (1 << HWTSTAMP_TX_OFF) |
++ (1 << HWTSTAMP_TX_ON);
++
++ info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
++ (1 << HWTSTAMP_FILTER_ALL);
++ return 0;
++ } else {
++ return ethtool_op_get_ts_info(ndev, info);
++ }
++}
++
++#if !defined(CONFIG_M5272)
++
++static void fec_enet_get_pauseparam(struct net_device *ndev,
++ struct ethtool_pauseparam *pause)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++
++ pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
++ pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
++ pause->rx_pause = pause->tx_pause;
++}
++
++static int fec_enet_set_pauseparam(struct net_device *ndev,
++ struct ethtool_pauseparam *pause)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++
++ if (!fep->phy_dev)
++ return -ENODEV;
++
++ if (pause->tx_pause != pause->rx_pause) {
++ netdev_info(ndev,
++ "hardware only support enable/disable both tx and rx");
++ return -EINVAL;
++ }
++
++ fep->pause_flag = 0;
++
++ /* tx pause must be same as rx pause */
++ fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
++ fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
++
++ if (pause->rx_pause || pause->autoneg) {
++ fep->phy_dev->supported |= ADVERTISED_Pause;
++ fep->phy_dev->advertising |= ADVERTISED_Pause;
++ } else {
++ fep->phy_dev->supported &= ~ADVERTISED_Pause;
++ fep->phy_dev->advertising &= ~ADVERTISED_Pause;
++ }
++
++ if (pause->autoneg) {
++ if (netif_running(ndev))
++ fec_stop(ndev);
++ phy_start_aneg(fep->phy_dev);
++ }
++ if (netif_running(ndev)) {
++ napi_disable(&fep->napi);
++ netif_tx_lock_bh(ndev);
++ fec_restart(ndev);
++ netif_wake_queue(ndev);
++ netif_tx_unlock_bh(ndev);
++ napi_enable(&fep->napi);
++ }
++
++ return 0;
++}
++
++static const struct fec_stat {
++ char name[ETH_GSTRING_LEN];
++ u16 offset;
++} fec_stats[] = {
++ /* RMON TX */
++ { "tx_dropped", RMON_T_DROP },
++ { "tx_packets", RMON_T_PACKETS },
++ { "tx_broadcast", RMON_T_BC_PKT },
++ { "tx_multicast", RMON_T_MC_PKT },
++ { "tx_crc_errors", RMON_T_CRC_ALIGN },
++ { "tx_undersize", RMON_T_UNDERSIZE },
++ { "tx_oversize", RMON_T_OVERSIZE },
++ { "tx_fragment", RMON_T_FRAG },
++ { "tx_jabber", RMON_T_JAB },
++ { "tx_collision", RMON_T_COL },
++ { "tx_64byte", RMON_T_P64 },
++ { "tx_65to127byte", RMON_T_P65TO127 },
++ { "tx_128to255byte", RMON_T_P128TO255 },
++ { "tx_256to511byte", RMON_T_P256TO511 },
++ { "tx_512to1023byte", RMON_T_P512TO1023 },
++ { "tx_1024to2047byte", RMON_T_P1024TO2047 },
++ { "tx_GTE2048byte", RMON_T_P_GTE2048 },
++ { "tx_octets", RMON_T_OCTETS },
++
++ /* IEEE TX */
++ { "IEEE_tx_drop", IEEE_T_DROP },
++ { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
++ { "IEEE_tx_1col", IEEE_T_1COL },
++ { "IEEE_tx_mcol", IEEE_T_MCOL },
++ { "IEEE_tx_def", IEEE_T_DEF },
++ { "IEEE_tx_lcol", IEEE_T_LCOL },
++ { "IEEE_tx_excol", IEEE_T_EXCOL },
++ { "IEEE_tx_macerr", IEEE_T_MACERR },
++ { "IEEE_tx_cserr", IEEE_T_CSERR },
++ { "IEEE_tx_sqe", IEEE_T_SQE },
++ { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
++ { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
++
++ /* RMON RX */
++ { "rx_packets", RMON_R_PACKETS },
++ { "rx_broadcast", RMON_R_BC_PKT },
++ { "rx_multicast", RMON_R_MC_PKT },
++ { "rx_crc_errors", RMON_R_CRC_ALIGN },
++ { "rx_undersize", RMON_R_UNDERSIZE },
++ { "rx_oversize", RMON_R_OVERSIZE },
++ { "rx_fragment", RMON_R_FRAG },
++ { "rx_jabber", RMON_R_JAB },
++ { "rx_64byte", RMON_R_P64 },
++ { "rx_65to127byte", RMON_R_P65TO127 },
++ { "rx_128to255byte", RMON_R_P128TO255 },
++ { "rx_256to511byte", RMON_R_P256TO511 },
++ { "rx_512to1023byte", RMON_R_P512TO1023 },
++ { "rx_1024to2047byte", RMON_R_P1024TO2047 },
++ { "rx_GTE2048byte", RMON_R_P_GTE2048 },
++ { "rx_octets", RMON_R_OCTETS },
++
++ /* IEEE RX */
++ { "IEEE_rx_drop", IEEE_R_DROP },
++ { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
++ { "IEEE_rx_crc", IEEE_R_CRC },
++ { "IEEE_rx_align", IEEE_R_ALIGN },
++ { "IEEE_rx_macerr", IEEE_R_MACERR },
++ { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
++ { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
++};
++
++static void fec_enet_get_ethtool_stats(struct net_device *dev,
++ struct ethtool_stats *stats, u64 *data)
++{
++ struct fec_enet_private *fep = netdev_priv(dev);
++ int i;
++
++ for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
++ data[i] = readl(fep->hwp + fec_stats[i].offset);
++}
++
++static void fec_enet_get_strings(struct net_device *netdev,
++ u32 stringset, u8 *data)
++{
++ int i;
++ switch (stringset) {
++ case ETH_SS_STATS:
++ for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
++ memcpy(data + i * ETH_GSTRING_LEN,
++ fec_stats[i].name, ETH_GSTRING_LEN);
++ break;
++ }
++}
++
++static int fec_enet_get_sset_count(struct net_device *dev, int sset)
++{
++ switch (sset) {
++ case ETH_SS_STATS:
++ return ARRAY_SIZE(fec_stats);
++ default:
++ return -EOPNOTSUPP;
++ }
++}
++#endif /* !defined(CONFIG_M5272) */
++
++static int fec_enet_nway_reset(struct net_device *dev)
++{
++ struct fec_enet_private *fep = netdev_priv(dev);
++ struct phy_device *phydev = fep->phy_dev;
++
++ if (!phydev)
++ return -ENODEV;
++
++ return genphy_restart_aneg(phydev);
++}
++
++/* ITR clock source is enet system clock (clk_ahb).
++ * TCTT unit is cycle_ns * 64 cycle
++ * So, the ICTT value = X us / (cycle_ns * 64)
++ */
++static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++
++ return us * (fep->itr_clk_rate / 64000) / 1000;
++}
++
++/* Set threshold for interrupt coalescing */
++static void fec_enet_itr_coal_set(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ int rx_itr, tx_itr;
++
++ if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
++ return;
++
++ /* Must be greater than zero to avoid unpredictable behavior */
++ if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
++ !fep->tx_time_itr || !fep->tx_pkts_itr)
++ return;
++
++ /* Select enet system clock as Interrupt Coalescing
++ * timer Clock Source
++ */
++ rx_itr = FEC_ITR_CLK_SEL;
++ tx_itr = FEC_ITR_CLK_SEL;
++
++ /* set ICFT and ICTT */
++ rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
++ rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
++ tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
++ tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
++
++ rx_itr |= FEC_ITR_EN;
++ tx_itr |= FEC_ITR_EN;
++
++ writel(tx_itr, fep->hwp + FEC_TXIC0);
++ writel(rx_itr, fep->hwp + FEC_RXIC0);
++ writel(tx_itr, fep->hwp + FEC_TXIC1);
++ writel(rx_itr, fep->hwp + FEC_RXIC1);
++ writel(tx_itr, fep->hwp + FEC_TXIC2);
++ writel(rx_itr, fep->hwp + FEC_RXIC2);
++}
++
++static int
++fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++
++ if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
++ return -EOPNOTSUPP;
++
++ ec->rx_coalesce_usecs = fep->rx_time_itr;
++ ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
++
++ ec->tx_coalesce_usecs = fep->tx_time_itr;
++ ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
++
++ return 0;
++}
++
++static int
++fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ unsigned int cycle;
++
++ if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
++ return -EOPNOTSUPP;
++
++ if (ec->rx_max_coalesced_frames > 255) {
++ pr_err("Rx coalesced frames exceed hardware limiation");
++ return -EINVAL;
++ }
++
++ if (ec->tx_max_coalesced_frames > 255) {
++ pr_err("Tx coalesced frame exceed hardware limiation");
++ return -EINVAL;
++ }
++
++ cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
++ if (cycle > 0xFFFF) {
++ pr_err("Rx coalesed usec exceeed hardware limiation");
++ return -EINVAL;
++ }
++
++ cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
++ if (cycle > 0xFFFF) {
++ pr_err("Rx coalesed usec exceeed hardware limiation");
++ return -EINVAL;
++ }
++
++ fep->rx_time_itr = ec->rx_coalesce_usecs;
++ fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
++
++ fep->tx_time_itr = ec->tx_coalesce_usecs;
++ fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
++
++ fec_enet_itr_coal_set(ndev);
++
++ return 0;
++}
++
++static void fec_enet_itr_coal_init(struct net_device *ndev)
++{
++ struct ethtool_coalesce ec;
++
++ ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
++ ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
++
++ ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
++ ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
++
++ fec_enet_set_coalesce(ndev, &ec);
++}
++
++static int fec_enet_get_tunable(struct net_device *netdev,
++ const struct ethtool_tunable *tuna,
++ void *data)
++{
++ struct fec_enet_private *fep = netdev_priv(netdev);
++ int ret = 0;
++
++ switch (tuna->id) {
++ case ETHTOOL_RX_COPYBREAK:
++ *(u32 *)data = fep->rx_copybreak;
++ break;
++ default:
++ ret = -EINVAL;
++ break;
++ }
++
++ return ret;
++}
++
++static int fec_enet_set_tunable(struct net_device *netdev,
++ const struct ethtool_tunable *tuna,
++ const void *data)
++{
++ struct fec_enet_private *fep = netdev_priv(netdev);
++ int ret = 0;
++
++ switch (tuna->id) {
++ case ETHTOOL_RX_COPYBREAK:
++ fep->rx_copybreak = *(u32 *)data;
++ break;
++ default:
++ ret = -EINVAL;
++ break;
++ }
++
++ return ret;
++}
++
++static void
++fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++
++ if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
++ wol->supported = WAKE_MAGIC;
++ wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
++ } else {
++ wol->supported = wol->wolopts = 0;
++ }
++}
++
++static int
++fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++
++ if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
++ return -EINVAL;
++
++ if (wol->wolopts & ~WAKE_MAGIC)
++ return -EINVAL;
++
++ device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
++ if (device_may_wakeup(&ndev->dev)) {
++ fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
++ if (fep->irq[0] > 0)
++ enable_irq_wake(fep->irq[0]);
++ } else {
++ fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
++ if (fep->irq[0] > 0)
++ disable_irq_wake(fep->irq[0]);
++ }
++
++ return 0;
++}
++
++static const struct ethtool_ops fec_enet_ethtool_ops = {
++ .get_settings = fec_enet_get_settings,
++ .set_settings = fec_enet_set_settings,
++ .get_drvinfo = fec_enet_get_drvinfo,
++ .nway_reset = fec_enet_nway_reset,
++ .get_link = ethtool_op_get_link,
++ .get_coalesce = fec_enet_get_coalesce,
++ .set_coalesce = fec_enet_set_coalesce,
++#ifndef CONFIG_M5272
++ .get_pauseparam = fec_enet_get_pauseparam,
++ .set_pauseparam = fec_enet_set_pauseparam,
++ .get_strings = fec_enet_get_strings,
++ .get_ethtool_stats = fec_enet_get_ethtool_stats,
++ .get_sset_count = fec_enet_get_sset_count,
++#endif
++ .get_ts_info = fec_enet_get_ts_info,
++ .get_tunable = fec_enet_get_tunable,
++ .set_tunable = fec_enet_set_tunable,
++ .get_wol = fec_enet_get_wol,
++ .set_wol = fec_enet_set_wol,
++};
++
++static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct phy_device *phydev = fep->phy_dev;
++
++ if (!netif_running(ndev))
++ return -EINVAL;
++
++ if (!phydev)
++ return -ENODEV;
++
++ if (fep->bufdesc_ex) {
++ if (cmd == SIOCSHWTSTAMP)
++ return fec_ptp_set(ndev, rq);
++ if (cmd == SIOCGHWTSTAMP)
++ return fec_ptp_get(ndev, rq);
++ }
++
++ return phy_mii_ioctl(phydev, rq, cmd);
++}
++
++static void fec_enet_free_buffers(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ unsigned int i;
++ struct sk_buff *skb;
++ struct bufdesc *bdp;
++ struct fec_enet_priv_tx_q *txq;
++ struct fec_enet_priv_rx_q *rxq;
++ unsigned int q;
++
++ for (q = 0; q < fep->num_rx_queues; q++) {
++ rxq = fep->rx_queue[q];
++ bdp = rxq->rx_bd_base;
++ for (i = 0; i < rxq->rx_ring_size; i++) {
++ skb = rxq->rx_skbuff[i];
++ rxq->rx_skbuff[i] = NULL;
++ if (skb) {
++ dma_unmap_single(&fep->pdev->dev,
++ bdp->cbd_bufaddr,
++ FEC_ENET_RX_FRSIZE - fep->rx_align,
++ DMA_FROM_DEVICE);
++ dev_kfree_skb(skb);
++ }
++ bdp = fec_enet_get_nextdesc(bdp, fep, q);
++ }
++ }
++
++ for (q = 0; q < fep->num_tx_queues; q++) {
++ txq = fep->tx_queue[q];
++ bdp = txq->tx_bd_base;
++ for (i = 0; i < txq->tx_ring_size; i++) {
++ kfree(txq->tx_bounce[i]);
++ txq->tx_bounce[i] = NULL;
++ skb = txq->tx_skbuff[i];
++ txq->tx_skbuff[i] = NULL;
++ dev_kfree_skb(skb);
++ }
++ }
++}
++
++static void fec_enet_free_queue(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ int i;
++ struct fec_enet_priv_tx_q *txq;
++
++ for (i = 0; i < fep->num_tx_queues; i++)
++ if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
++ txq = fep->tx_queue[i];
++ dma_free_coherent(NULL,
++ txq->tx_ring_size * TSO_HEADER_SIZE,
++ txq->tso_hdrs,
++ txq->tso_hdrs_dma);
++ }
++
++ for (i = 0; i < fep->num_rx_queues; i++)
++ kfree(fep->rx_queue[i]);
++ for (i = 0; i < fep->num_tx_queues; i++)
++ kfree(fep->tx_queue[i]);
++}
++
++static int fec_enet_alloc_queue(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ int i;
++ int ret = 0;
++ struct fec_enet_priv_tx_q *txq;
++
++ for (i = 0; i < fep->num_tx_queues; i++) {
++ txq = kzalloc(sizeof(*txq), GFP_KERNEL);
++ if (!txq) {
++ ret = -ENOMEM;
++ goto alloc_failed;
++ }
++
++ fep->tx_queue[i] = txq;
++ txq->tx_ring_size = TX_RING_SIZE;
++ fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
++
++ txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
++ txq->tx_wake_threshold =
++ (txq->tx_ring_size - txq->tx_stop_threshold) / 2;
++
++ txq->tso_hdrs = dma_alloc_coherent(NULL,
++ txq->tx_ring_size * TSO_HEADER_SIZE,
++ &txq->tso_hdrs_dma,
++ GFP_KERNEL);
++ if (!txq->tso_hdrs) {
++ ret = -ENOMEM;
++ goto alloc_failed;
++ }
++ }
++
++ for (i = 0; i < fep->num_rx_queues; i++) {
++ fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
++ GFP_KERNEL);
++ if (!fep->rx_queue[i]) {
++ ret = -ENOMEM;
++ goto alloc_failed;
++ }
++
++ fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
++ fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
++ }
++ return ret;
++
++alloc_failed:
++ fec_enet_free_queue(ndev);
++ return ret;
++}
++
++static int
++fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ unsigned int i;
++ struct sk_buff *skb;
++ struct bufdesc *bdp;
++ struct fec_enet_priv_rx_q *rxq;
++
++ rxq = fep->rx_queue[queue];
++ bdp = rxq->rx_bd_base;
++ for (i = 0; i < rxq->rx_ring_size; i++) {
++ skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
++ if (!skb)
++ goto err_alloc;
++
++ if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
++ dev_kfree_skb(skb);
++ goto err_alloc;
++ }
++
++ rxq->rx_skbuff[i] = skb;
++ bdp->cbd_sc = BD_ENET_RX_EMPTY;
++
++ if (fep->bufdesc_ex) {
++ struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
++ ebdp->cbd_esc = BD_ENET_RX_INT;
++ }
++
++ bdp = fec_enet_get_nextdesc(bdp, fep, queue);
++ }
++
++ /* Set the last buffer to wrap. */
++ bdp = fec_enet_get_prevdesc(bdp, fep, queue);
++ bdp->cbd_sc |= BD_SC_WRAP;
++ return 0;
++
++ err_alloc:
++ fec_enet_free_buffers(ndev);
++ return -ENOMEM;
++}
++
++static int
++fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ unsigned int i;
++ struct bufdesc *bdp;
++ struct fec_enet_priv_tx_q *txq;
++
++ txq = fep->tx_queue[queue];
++ bdp = txq->tx_bd_base;
++ for (i = 0; i < txq->tx_ring_size; i++) {
++ txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
++ if (!txq->tx_bounce[i])
++ goto err_alloc;
++
++ bdp->cbd_sc = 0;
++ bdp->cbd_bufaddr = 0;
++
++ if (fep->bufdesc_ex) {
++ struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
++ ebdp->cbd_esc = BD_ENET_TX_INT;
++ }
++
++ bdp = fec_enet_get_nextdesc(bdp, fep, queue);
++ }
++
++ /* Set the last buffer to wrap. */
++ bdp = fec_enet_get_prevdesc(bdp, fep, queue);
++ bdp->cbd_sc |= BD_SC_WRAP;
++
++ return 0;
++
++ err_alloc:
++ fec_enet_free_buffers(ndev);
++ return -ENOMEM;
++}
++
++static int fec_enet_alloc_buffers(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ unsigned int i;
++
++ for (i = 0; i < fep->num_rx_queues; i++)
++ if (fec_enet_alloc_rxq_buffers(ndev, i))
++ return -ENOMEM;
++
++ for (i = 0; i < fep->num_tx_queues; i++)
++ if (fec_enet_alloc_txq_buffers(ndev, i))
++ return -ENOMEM;
++ return 0;
++}
++
++static int
++fec_enet_open(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ int ret;
++
++ pinctrl_pm_select_default_state(&fep->pdev->dev);
++ ret = fec_enet_clk_enable(ndev, true);
++ if (ret)
++ return ret;
++
++ /* I should reset the ring buffers here, but I don't yet know
++ * a simple way to do that.
++ */
++
++ ret = fec_enet_alloc_buffers(ndev);
++ if (ret)
++ goto err_enet_alloc;
++
++ /* Probe and connect to PHY when open the interface */
++ ret = fec_enet_mii_probe(ndev);
++ if (ret)
++ goto err_enet_mii_probe;
++
++ fec_restart(ndev);
++ napi_enable(&fep->napi);
++ phy_start(fep->phy_dev);
++ netif_tx_start_all_queues(ndev);
++
++ device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
++ FEC_WOL_FLAG_ENABLE);
++
++ return 0;
++
++err_enet_mii_probe:
++ fec_enet_free_buffers(ndev);
++err_enet_alloc:
++ fec_enet_clk_enable(ndev, false);
++ pinctrl_pm_select_sleep_state(&fep->pdev->dev);
++ return ret;
++}
++
++static int
++fec_enet_close(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++
++ phy_stop(fep->phy_dev);
++
++ if (netif_device_present(ndev)) {
++ napi_disable(&fep->napi);
++ netif_tx_disable(ndev);
++ fec_stop(ndev);
++ }
++
++ phy_disconnect(fep->phy_dev);
++ fep->phy_dev = NULL;
++
++ fec_enet_clk_enable(ndev, false);
++ pinctrl_pm_select_sleep_state(&fep->pdev->dev);
++ fec_enet_free_buffers(ndev);
++
++ return 0;
++}
++
++/* Set or clear the multicast filter for this adaptor.
++ * Skeleton taken from sunlance driver.
++ * The CPM Ethernet implementation allows Multicast as well as individual
++ * MAC address filtering. Some of the drivers check to make sure it is
++ * a group multicast address, and discard those that are not. I guess I
++ * will do the same for now, but just remove the test if you want
++ * individual filtering as well (do the upper net layers want or support
++ * this kind of feature?).
++ */
++
++#define HASH_BITS 6 /* #bits in hash */
++#define CRC32_POLY 0xEDB88320
++
++static void set_multicast_list(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct netdev_hw_addr *ha;
++ unsigned int i, bit, data, crc, tmp;
++ unsigned char hash;
++
++ if (ndev->flags & IFF_PROMISC) {
++ tmp = readl(fep->hwp + FEC_R_CNTRL);
++ tmp |= 0x8;
++ writel(tmp, fep->hwp + FEC_R_CNTRL);
++ return;
++ }
++
++ tmp = readl(fep->hwp + FEC_R_CNTRL);
++ tmp &= ~0x8;
++ writel(tmp, fep->hwp + FEC_R_CNTRL);
++
++ if (ndev->flags & IFF_ALLMULTI) {
++ /* Catch all multicast addresses, so set the
++ * filter to all 1's
++ */
++ writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
++ writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
++
++ return;
++ }
++
++ /* Clear filter and add the addresses in hash register
++ */
++ writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
++ writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
++
++ netdev_for_each_mc_addr(ha, ndev) {
++ /* calculate crc32 value of mac address */
++ crc = 0xffffffff;
++
++ for (i = 0; i < ndev->addr_len; i++) {
++ data = ha->addr[i];
++ for (bit = 0; bit < 8; bit++, data >>= 1) {
++ crc = (crc >> 1) ^
++ (((crc ^ data) & 1) ? CRC32_POLY : 0);
++ }
++ }
++
++ /* only upper 6 bits (HASH_BITS) are used
++ * which point to specific bit in he hash registers
++ */
++ hash = (crc >> (32 - HASH_BITS)) & 0x3f;
++
++ if (hash > 31) {
++ tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
++ tmp |= 1 << (hash - 32);
++ writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
++ } else {
++ tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
++ tmp |= 1 << hash;
++ writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
++ }
++ }
++}
++
++/* Set a MAC change in hardware. */
++static int
++fec_set_mac_address(struct net_device *ndev, void *p)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct sockaddr *addr = p;
++
++ if (addr) {
++ if (!is_valid_ether_addr(addr->sa_data))
++ return -EADDRNOTAVAIL;
++ memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
++ }
++
++ writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
++ (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
++ fep->hwp + FEC_ADDR_LOW);
++ writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
++ fep->hwp + FEC_ADDR_HIGH);
++ return 0;
++}
++
++#ifdef CONFIG_NET_POLL_CONTROLLER
++/**
++ * fec_poll_controller - FEC Poll controller function
++ * @dev: The FEC network adapter
++ *
++ * Polled functionality used by netconsole and others in non interrupt mode
++ *
++ */
++static void fec_poll_controller(struct net_device *dev)
++{
++ int i;
++ struct fec_enet_private *fep = netdev_priv(dev);
++
++ for (i = 0; i < FEC_IRQ_NUM; i++) {
++ if (fep->irq[i] > 0) {
++ disable_irq(fep->irq[i]);
++ fec_enet_interrupt(fep->irq[i], dev);
++ enable_irq(fep->irq[i]);
++ }
++ }
++}
++#endif
++
++#define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
++static inline void fec_enet_set_netdev_features(struct net_device *netdev,
++ netdev_features_t features)
++{
++ struct fec_enet_private *fep = netdev_priv(netdev);
++ netdev_features_t changed = features ^ netdev->features;
++
++ netdev->features = features;
++
++ /* Receive checksum has been changed */
++ if (changed & NETIF_F_RXCSUM) {
++ if (features & NETIF_F_RXCSUM)
++ fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
++ else
++ fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
++ }
++}
++
++static int fec_set_features(struct net_device *netdev,
++ netdev_features_t features)
++{
++ struct fec_enet_private *fep = netdev_priv(netdev);
++ netdev_features_t changed = features ^ netdev->features;
++
++ if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
++ napi_disable(&fep->napi);
++ netif_tx_lock_bh(netdev);
++ fec_stop(netdev);
++ fec_enet_set_netdev_features(netdev, features);
++ fec_restart(netdev);
++ netif_tx_wake_all_queues(netdev);
++ netif_tx_unlock_bh(netdev);
++ napi_enable(&fep->napi);
++ } else {
++ fec_enet_set_netdev_features(netdev, features);
++ }
++
++ return 0;
++}
++
++static const struct net_device_ops fec_netdev_ops = {
++ .ndo_open = fec_enet_open,
++ .ndo_stop = fec_enet_close,
++ .ndo_start_xmit = fec_enet_start_xmit,
++ .ndo_set_rx_mode = set_multicast_list,
++ .ndo_change_mtu = eth_change_mtu,
++ .ndo_validate_addr = eth_validate_addr,
++ .ndo_tx_timeout = fec_timeout,
++ .ndo_set_mac_address = fec_set_mac_address,
++ .ndo_do_ioctl = fec_enet_ioctl,
++#ifdef CONFIG_NET_POLL_CONTROLLER
++ .ndo_poll_controller = fec_poll_controller,
++#endif
++ .ndo_set_features = fec_set_features,
++};
++
++ /*
++ * XXX: We need to clean up on failure exits here.
++ *
++ */
++static int fec_enet_init(struct net_device *ndev)
++{
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct fec_enet_priv_tx_q *txq;
++ struct fec_enet_priv_rx_q *rxq;
++ struct bufdesc *cbd_base;
++ dma_addr_t bd_dma;
++ int bd_size;
++ unsigned int i;
++
++#if defined(CONFIG_ARM)
++ fep->rx_align = 0xf;
++ fep->tx_align = 0xf;
++#else
++ fep->rx_align = 0x3;
++ fep->tx_align = 0x3;
++#endif
++
++ fec_enet_alloc_queue(ndev);
++
++ if (fep->bufdesc_ex)
++ fep->bufdesc_size = sizeof(struct bufdesc_ex);
++ else
++ fep->bufdesc_size = sizeof(struct bufdesc);
++ bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
++ fep->bufdesc_size;
++
++ /* Allocate memory for buffer descriptors. */
++ cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
++ GFP_KERNEL);
++ if (!cbd_base) {
++ return -ENOMEM;
++ }
++
++ memset(cbd_base, 0, bd_size);
++
++ /* Get the Ethernet address */
++ fec_get_mac(ndev);
++ /* make sure MAC we just acquired is programmed into the hw */
++ fec_set_mac_address(ndev, NULL);
++
++ /* Set receive and transmit descriptor base. */
++ for (i = 0; i < fep->num_rx_queues; i++) {
++ rxq = fep->rx_queue[i];
++ rxq->index = i;
++ rxq->rx_bd_base = (struct bufdesc *)cbd_base;
++ rxq->bd_dma = bd_dma;
++ if (fep->bufdesc_ex) {
++ bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
++ cbd_base = (struct bufdesc *)
++ (((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
++ } else {
++ bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
++ cbd_base += rxq->rx_ring_size;
++ }
++ }
++
++ for (i = 0; i < fep->num_tx_queues; i++) {
++ txq = fep->tx_queue[i];
++ txq->index = i;
++ txq->tx_bd_base = (struct bufdesc *)cbd_base;
++ txq->bd_dma = bd_dma;
++ if (fep->bufdesc_ex) {
++ bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
++ cbd_base = (struct bufdesc *)
++ (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
++ } else {
++ bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
++ cbd_base += txq->tx_ring_size;
++ }
++ }
++
++
++ /* The FEC Ethernet specific entries in the device structure */
++ ndev->watchdog_timeo = TX_TIMEOUT;
++ ndev->netdev_ops = &fec_netdev_ops;
++ ndev->ethtool_ops = &fec_enet_ethtool_ops;
++
++ writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
++ netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
++
++ if (fep->quirks & FEC_QUIRK_HAS_VLAN)
++ /* enable hw VLAN support */
++ ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
++
++ if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
++ ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
++
++ /* enable hw accelerator */
++ ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
++ | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
++ fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
++ }
++
++ if (fep->quirks & FEC_QUIRK_HAS_AVB) {
++ fep->tx_align = 0;
++ fep->rx_align = 0x3f;
++ }
++
++ ndev->hw_features = ndev->features;
++
++ fec_restart(ndev);
++
++ return 0;
++}
++
++#ifdef CONFIG_OF
++static void fec_reset_phy(struct platform_device *pdev)
++{
++ int err, phy_reset;
++ int msec = 1;
++ struct device_node *np = pdev->dev.of_node;
++
++ if (!np)
++ return;
++
++ of_property_read_u32(np, "phy-reset-duration", &msec);
++ /* A sane reset duration should not be longer than 1s */
++ if (msec > 1000)
++ msec = 1;
++
++ phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
++ if (!gpio_is_valid(phy_reset))
++ return;
++
++ err = devm_gpio_request_one(&pdev->dev, phy_reset,
++ GPIOF_OUT_INIT_LOW, "phy-reset");
++ if (err) {
++ dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
++ return;
++ }
++ msleep(msec);
++ gpio_set_value(phy_reset, 1);
++}
++#else /* CONFIG_OF */
++static void fec_reset_phy(struct platform_device *pdev)
++{
++ /*
++ * In case of platform probe, the reset has been done
++ * by machine code.
++ */
++}
++#endif /* CONFIG_OF */
++
++static void
++fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
++{
++ struct device_node *np = pdev->dev.of_node;
++ int err;
++
++ *num_tx = *num_rx = 1;
++
++ if (!np || !of_device_is_available(np))
++ return;
++
++ /* parse the num of tx and rx queues */
++ err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
++ if (err)
++ *num_tx = 1;
++
++ err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
++ if (err)
++ *num_rx = 1;
++
++ if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
++ dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
++ *num_tx);
++ *num_tx = 1;
++ return;
++ }
++
++ if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
++ dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
++ *num_rx);
++ *num_rx = 1;
++ return;
++ }
++
++}
++
++static int
++fec_probe(struct platform_device *pdev)
++{
++ struct fec_enet_private *fep;
++ struct fec_platform_data *pdata;
++ struct net_device *ndev;
++ int i, irq, ret = 0;
++ struct resource *r;
++ const struct of_device_id *of_id;
++ static int dev_id;
++ struct device_node *np = pdev->dev.of_node, *phy_node;
++ int num_tx_qs;
++ int num_rx_qs;
++
++ fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
++
++ /* Init network device */
++ ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
++ num_tx_qs, num_rx_qs);
++ if (!ndev)
++ return -ENOMEM;
++
++ SET_NETDEV_DEV(ndev, &pdev->dev);
++
++ /* setup board info structure */
++ fep = netdev_priv(ndev);
++
++ of_id = of_match_device(fec_dt_ids, &pdev->dev);
++ if (of_id)
++ pdev->id_entry = of_id->data;
++ fep->quirks = pdev->id_entry->driver_data;
++
++ fep->netdev = ndev;
++ fep->num_rx_queues = num_rx_qs;
++ fep->num_tx_queues = num_tx_qs;
++
++#if !defined(CONFIG_M5272)
++ /* default enable pause frame auto negotiation */
++ if (fep->quirks & FEC_QUIRK_HAS_GBIT)
++ fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
++#endif
++
++ /* Select default pin state */
++ pinctrl_pm_select_default_state(&pdev->dev);
++
++ r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++ fep->hwp = devm_ioremap_resource(&pdev->dev, r);
++ if (IS_ERR(fep->hwp)) {
++ ret = PTR_ERR(fep->hwp);
++ goto failed_ioremap;
++ }
++
++ fep->pdev = pdev;
++ fep->dev_id = dev_id++;
++
++ platform_set_drvdata(pdev, ndev);
++
++ if (of_get_property(np, "fsl,magic-packet", NULL))
++ fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
++
++ phy_node = of_parse_phandle(np, "phy-handle", 0);
++ if (!phy_node && of_phy_is_fixed_link(np)) {
++ ret = of_phy_register_fixed_link(np);
++ if (ret < 0) {
++ dev_err(&pdev->dev,
++ "broken fixed-link specification\n");
++ goto failed_phy;
++ }
++ phy_node = of_node_get(np);
++ }
++ fep->phy_node = phy_node;
++
++ ret = of_get_phy_mode(pdev->dev.of_node);
++ if (ret < 0) {
++ pdata = dev_get_platdata(&pdev->dev);
++ if (pdata)
++ fep->phy_interface = pdata->phy;
++ else
++ fep->phy_interface = PHY_INTERFACE_MODE_MII;
++ } else {
++ fep->phy_interface = ret;
++ }
++
++ fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
++ if (IS_ERR(fep->clk_ipg)) {
++ ret = PTR_ERR(fep->clk_ipg);
++ goto failed_clk;
++ }
++
++ fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
++ if (IS_ERR(fep->clk_ahb)) {
++ ret = PTR_ERR(fep->clk_ahb);
++ goto failed_clk;
++ }
++
++ fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
++
++ /* enet_out is optional, depends on board */
++ fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
++ if (IS_ERR(fep->clk_enet_out))
++ fep->clk_enet_out = NULL;
++
++ fep->ptp_clk_on = false;
++ mutex_init(&fep->ptp_clk_mutex);
++
++ /* clk_ref is optional, depends on board */
++ fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
++ if (IS_ERR(fep->clk_ref))
++ fep->clk_ref = NULL;
++
++ fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
++ fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
++ if (IS_ERR(fep->clk_ptp)) {
++ fep->clk_ptp = NULL;
++ fep->bufdesc_ex = false;
++ }
++
++ ret = fec_enet_clk_enable(ndev, true);
++ if (ret)
++ goto failed_clk;
++
++ fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
++ if (!IS_ERR(fep->reg_phy)) {
++ ret = regulator_enable(fep->reg_phy);
++ if (ret) {
++ dev_err(&pdev->dev,
++ "Failed to enable phy regulator: %d\n", ret);
++ goto failed_regulator;
++ }
++ } else {
++ fep->reg_phy = NULL;
++ }
++
++ fec_reset_phy(pdev);
++
++ if (fep->bufdesc_ex)
++ fec_ptp_init(pdev);
++
++ ret = fec_enet_init(ndev);
++ if (ret)
++ goto failed_init;
++
++ for (i = 0; i < FEC_IRQ_NUM; i++) {
++ irq = platform_get_irq(pdev, i);
++ if (irq < 0) {
++ if (i)
++ break;
++ ret = irq;
++ goto failed_irq;
++ }
++ ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
++ 0, pdev->name, ndev);
++ if (ret)
++ goto failed_irq;
++
++ fep->irq[i] = irq;
++ }
++
++ init_completion(&fep->mdio_done);
++ ret = fec_enet_mii_init(pdev);
++ if (ret)
++ goto failed_mii_init;
++
++ /* Carrier starts down, phylib will bring it up */
++ netif_carrier_off(ndev);
++ fec_enet_clk_enable(ndev, false);
++ pinctrl_pm_select_sleep_state(&pdev->dev);
++
++ ret = register_netdev(ndev);
++ if (ret)
++ goto failed_register;
++
++ device_init_wakeup(&ndev->dev, fep->wol_flag &
++ FEC_WOL_HAS_MAGIC_PACKET);
++
++ if (fep->bufdesc_ex && fep->ptp_clock)
++ netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
++
++ fep->rx_copybreak = COPYBREAK_DEFAULT;
++ INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
++ return 0;
++
++failed_register:
++ fec_enet_mii_remove(fep);
++failed_mii_init:
++failed_irq:
++failed_init:
++ if (fep->reg_phy)
++ regulator_disable(fep->reg_phy);
++failed_regulator:
++ fec_enet_clk_enable(ndev, false);
++failed_clk:
++failed_phy:
++ of_node_put(phy_node);
++failed_ioremap:
++ free_netdev(ndev);
++
++ return ret;
++}
++
++static int
++fec_drv_remove(struct platform_device *pdev)
++{
++ struct net_device *ndev = platform_get_drvdata(pdev);
++ struct fec_enet_private *fep = netdev_priv(ndev);
++
++ cancel_delayed_work_sync(&fep->time_keep);
++ cancel_work_sync(&fep->tx_timeout_work);
++ unregister_netdev(ndev);
++ fec_enet_mii_remove(fep);
++ if (fep->reg_phy)
++ regulator_disable(fep->reg_phy);
++ if (fep->ptp_clock)
++ ptp_clock_unregister(fep->ptp_clock);
++ of_node_put(fep->phy_node);
++ free_netdev(ndev);
++
++ return 0;
++}
++
++static int __maybe_unused fec_suspend(struct device *dev)
++{
++ struct net_device *ndev = dev_get_drvdata(dev);
++ struct fec_enet_private *fep = netdev_priv(ndev);
++
++ rtnl_lock();
++ if (netif_running(ndev)) {
++ if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
++ fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
++ phy_stop(fep->phy_dev);
++ napi_disable(&fep->napi);
++ netif_tx_lock_bh(ndev);
++ netif_device_detach(ndev);
++ netif_tx_unlock_bh(ndev);
++ fec_stop(ndev);
++ fec_enet_clk_enable(ndev, false);
++ if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
++ pinctrl_pm_select_sleep_state(&fep->pdev->dev);
++ }
++ rtnl_unlock();
++
++ if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
++ regulator_disable(fep->reg_phy);
++
++ /* SOC supply clock to phy, when clock is disabled, phy link down
++ * SOC control phy regulator, when regulator is disabled, phy link down
++ */
++ if (fep->clk_enet_out || fep->reg_phy)
++ fep->link = 0;
++
++ return 0;
++}
++
++static int __maybe_unused fec_resume(struct device *dev)
++{
++ struct net_device *ndev = dev_get_drvdata(dev);
++ struct fec_enet_private *fep = netdev_priv(ndev);
++ struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
++ int ret;
++ int val;
++
++ if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
++ ret = regulator_enable(fep->reg_phy);
++ if (ret)
++ return ret;
++ }
++
++ rtnl_lock();
++ if (netif_running(ndev)) {
++ ret = fec_enet_clk_enable(ndev, true);
++ if (ret) {
++ rtnl_unlock();
++ goto failed_clk;
++ }
++ if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
++ if (pdata && pdata->sleep_mode_enable)
++ pdata->sleep_mode_enable(false);
++ val = readl(fep->hwp + FEC_ECNTRL);
++ val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
++ writel(val, fep->hwp + FEC_ECNTRL);
++ fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
++ } else {
++ pinctrl_pm_select_default_state(&fep->pdev->dev);
++ }
++ fec_restart(ndev);
++ netif_tx_lock_bh(ndev);
++ netif_device_attach(ndev);
++ netif_tx_unlock_bh(ndev);
++ napi_enable(&fep->napi);
++ phy_start(fep->phy_dev);
++ }
++ rtnl_unlock();
++
++ return 0;
++
++failed_clk:
++ if (fep->reg_phy)
++ regulator_disable(fep->reg_phy);
++ return ret;
++}
++
++static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
++
++static struct platform_driver fec_driver = {
++ .driver = {
++ .name = DRIVER_NAME,
++ .pm = &fec_pm_ops,
++ .of_match_table = fec_dt_ids,
++ },
++ .id_table = fec_devtype,
++ .probe = fec_probe,
++ .remove = fec_drv_remove,
++};
++
++module_platform_driver(fec_driver);
++
++MODULE_ALIAS("platform:"DRIVER_NAME);
++MODULE_LICENSE("GPL");