summaryrefslogtreecommitdiff
path: root/target/linux/patches
diff options
context:
space:
mode:
authorWaldemar Brodkorb <mail@waldemar-brodkorb.de>2011-12-02 20:12:15 +0100
committerWaldemar Brodkorb <mail@waldemar-brodkorb.de>2011-12-02 20:12:15 +0100
commit10a88c87f57ef1effe13424abbcef223764699a5 (patch)
tree3d220c4119f5702d8596c5c529b5d76fe1474399 /target/linux/patches
parent61c9677c5d2f1707544024b2108b79f3b0f1fc22 (diff)
remove ocf support, broken in my setup
Diffstat (limited to 'target/linux/patches')
-rw-r--r--target/linux/patches/2.6.39.4/ocf-20100325.patch90176
-rw-r--r--target/linux/patches/3.0.9/ocf-20110720.patch99170
-rw-r--r--target/linux/patches/3.1.4/ocf-20110720.patch96377
3 files changed, 0 insertions, 285723 deletions
diff --git a/target/linux/patches/2.6.39.4/ocf-20100325.patch b/target/linux/patches/2.6.39.4/ocf-20100325.patch
deleted file mode 100644
index b26a65bc1..000000000
--- a/target/linux/patches/2.6.39.4/ocf-20100325.patch
+++ /dev/null
@@ -1,90176 +0,0 @@
-diff -Nur linux-2.6.39.orig/crypto/Kconfig linux-2.6.39/crypto/Kconfig
---- linux-2.6.39.orig/crypto/Kconfig 2011-05-19 06:06:34.000000000 +0200
-+++ linux-2.6.39/crypto/Kconfig 2011-08-01 14:38:18.000000000 +0200
-@@ -866,3 +866,6 @@
- source "drivers/crypto/Kconfig"
-
- endif # if CRYPTO
-+
-+source "crypto/ocf/Kconfig"
-+
-diff -Nur linux-2.6.39.orig/crypto/Kconfig.orig linux-2.6.39/crypto/Kconfig.orig
---- linux-2.6.39.orig/crypto/Kconfig.orig 1970-01-01 01:00:00.000000000 +0100
-+++ linux-2.6.39/crypto/Kconfig.orig 2011-08-01 14:38:18.000000000 +0200
-@@ -0,0 +1,868 @@
-+#
-+# Generic algorithms support
-+#
-+config XOR_BLOCKS
-+ tristate
-+
-+#
-+# async_tx api: hardware offloaded memory transfer/transform support
-+#
-+source "crypto/async_tx/Kconfig"
-+
-+#
-+# Cryptographic API Configuration
-+#
-+menuconfig CRYPTO
-+ tristate "Cryptographic API"
-+ help
-+ This option provides the core Cryptographic API.
-+
-+if CRYPTO
-+
-+comment "Crypto core or helper"
-+
-+config CRYPTO_FIPS
-+ bool "FIPS 200 compliance"
-+ depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS
-+ help
-+ This options enables the fips boot option which is
-+ required if you want to system to operate in a FIPS 200
-+ certification. You should say no unless you know what
-+ this is.
-+
-+config CRYPTO_ALGAPI
-+ tristate
-+ select CRYPTO_ALGAPI2
-+ help
-+ This option provides the API for cryptographic algorithms.
-+
-+config CRYPTO_ALGAPI2
-+ tristate
-+
-+config CRYPTO_AEAD
-+ tristate
-+ select CRYPTO_AEAD2
-+ select CRYPTO_ALGAPI
-+
-+config CRYPTO_AEAD2
-+ tristate
-+ select CRYPTO_ALGAPI2
-+
-+config CRYPTO_BLKCIPHER
-+ tristate
-+ select CRYPTO_BLKCIPHER2
-+ select CRYPTO_ALGAPI
-+
-+config CRYPTO_BLKCIPHER2
-+ tristate
-+ select CRYPTO_ALGAPI2
-+ select CRYPTO_RNG2
-+ select CRYPTO_WORKQUEUE
-+
-+config CRYPTO_HASH
-+ tristate
-+ select CRYPTO_HASH2
-+ select CRYPTO_ALGAPI
-+
-+config CRYPTO_HASH2
-+ tristate
-+ select CRYPTO_ALGAPI2
-+
-+config CRYPTO_RNG
-+ tristate
-+ select CRYPTO_RNG2
-+ select CRYPTO_ALGAPI
-+
-+config CRYPTO_RNG2
-+ tristate
-+ select CRYPTO_ALGAPI2
-+
-+config CRYPTO_PCOMP
-+ tristate
-+ select CRYPTO_PCOMP2
-+ select CRYPTO_ALGAPI
-+
-+config CRYPTO_PCOMP2
-+ tristate
-+ select CRYPTO_ALGAPI2
-+
-+config CRYPTO_MANAGER
-+ tristate "Cryptographic algorithm manager"
-+ select CRYPTO_MANAGER2
-+ help
-+ Create default cryptographic template instantiations such as
-+ cbc(aes).
-+
-+config CRYPTO_MANAGER2
-+ def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
-+ select CRYPTO_AEAD2
-+ select CRYPTO_HASH2
-+ select CRYPTO_BLKCIPHER2
-+ select CRYPTO_PCOMP2
-+
-+config CRYPTO_MANAGER_DISABLE_TESTS
-+ bool "Disable run-time self tests"
-+ default y
-+ depends on CRYPTO_MANAGER2
-+ help
-+ Disable run-time self tests that normally take place at
-+ algorithm registration.
-+
-+config CRYPTO_GF128MUL
-+ tristate "GF(2^128) multiplication functions (EXPERIMENTAL)"
-+ help
-+ Efficient table driven implementation of multiplications in the
-+ field GF(2^128). This is needed by some cypher modes. This
-+ option will be selected automatically if you select such a
-+ cipher mode. Only select this option by hand if you expect to load
-+ an external module that requires these functions.
-+
-+config CRYPTO_NULL
-+ tristate "Null algorithms"
-+ select CRYPTO_ALGAPI
-+ select CRYPTO_BLKCIPHER
-+ select CRYPTO_HASH
-+ help
-+ These are 'Null' algorithms, used by IPsec, which do nothing.
-+
-+config CRYPTO_PCRYPT
-+ tristate "Parallel crypto engine (EXPERIMENTAL)"
-+ depends on SMP && EXPERIMENTAL
-+ select PADATA
-+ select CRYPTO_MANAGER
-+ select CRYPTO_AEAD
-+ help
-+ This converts an arbitrary crypto algorithm into a parallel
-+ algorithm that executes in kernel threads.
-+
-+config CRYPTO_WORKQUEUE
-+ tristate
-+
-+config CRYPTO_CRYPTD
-+ tristate "Software async crypto daemon"
-+ select CRYPTO_BLKCIPHER
-+ select CRYPTO_HASH
-+ select CRYPTO_MANAGER
-+ select CRYPTO_WORKQUEUE
-+ help
-+ This is a generic software asynchronous crypto daemon that
-+ converts an arbitrary synchronous software crypto algorithm
-+ into an asynchronous algorithm that executes in a kernel thread.
-+
-+config CRYPTO_AUTHENC
-+ tristate "Authenc support"
-+ select CRYPTO_AEAD
-+ select CRYPTO_BLKCIPHER
-+ select CRYPTO_MANAGER
-+ select CRYPTO_HASH
-+ help
-+ Authenc: Combined mode wrapper for IPsec.
-+ This is required for IPSec.
-+
-+config CRYPTO_TEST
-+ tristate "Testing module"
-+ depends on m
-+ select CRYPTO_MANAGER
-+ help
-+ Quick & dirty crypto test module.
-+
-+comment "Authenticated Encryption with Associated Data"
-+
-+config CRYPTO_CCM
-+ tristate "CCM support"
-+ select CRYPTO_CTR
-+ select CRYPTO_AEAD
-+ help
-+ Support for Counter with CBC MAC. Required for IPsec.
-+
-+config CRYPTO_GCM
-+ tristate "GCM/GMAC support"
-+ select CRYPTO_CTR
-+ select CRYPTO_AEAD
-+ select CRYPTO_GHASH
-+ help
-+ Support for Galois/Counter Mode (GCM) and Galois Message
-+ Authentication Code (GMAC). Required for IPSec.
-+
-+config CRYPTO_SEQIV
-+ tristate "Sequence Number IV Generator"
-+ select CRYPTO_AEAD
-+ select CRYPTO_BLKCIPHER
-+ select CRYPTO_RNG
-+ help
-+ This IV generator generates an IV based on a sequence number by
-+ xoring it with a salt. This algorithm is mainly useful for CTR
-+
-+comment "Block modes"
-+
-+config CRYPTO_CBC
-+ tristate "CBC support"
-+ select CRYPTO_BLKCIPHER
-+ select CRYPTO_MANAGER
-+ help
-+ CBC: Cipher Block Chaining mode
-+ This block cipher algorithm is required for IPSec.
-+
-+config CRYPTO_CTR
-+ tristate "CTR support"
-+ select CRYPTO_BLKCIPHER
-+ select CRYPTO_SEQIV
-+ select CRYPTO_MANAGER
-+ help
-+ CTR: Counter mode
-+ This block cipher algorithm is required for IPSec.
-+
-+config CRYPTO_CTS
-+ tristate "CTS support"
-+ select CRYPTO_BLKCIPHER
-+ help
-+ CTS: Cipher Text Stealing
-+ This is the Cipher Text Stealing mode as described by
-+ Section 8 of rfc2040 and referenced by rfc3962.
-+ (rfc3962 includes errata information in its Appendix A)
-+ This mode is required for Kerberos gss mechanism support
-+ for AES encryption.
-+
-+config CRYPTO_ECB
-+ tristate "ECB support"
-+ select CRYPTO_BLKCIPHER
-+ select CRYPTO_MANAGER
-+ help
-+ ECB: Electronic CodeBook mode
-+ This is the simplest block cipher algorithm. It simply encrypts
-+ the input block by block.
-+
-+config CRYPTO_LRW
-+ tristate "LRW support (EXPERIMENTAL)"
-+ depends on EXPERIMENTAL
-+ select CRYPTO_BLKCIPHER
-+ select CRYPTO_MANAGER
-+ select CRYPTO_GF128MUL
-+ help
-+ LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
-+ narrow block cipher mode for dm-crypt. Use it with cipher
-+ specification string aes-lrw-benbi, the key must be 256, 320 or 384.
-+ The first 128, 192 or 256 bits in the key are used for AES and the
-+ rest is used to tie each cipher block to its logical position.
-+
-+config CRYPTO_PCBC
-+ tristate "PCBC support"
-+ select CRYPTO_BLKCIPHER
-+ select CRYPTO_MANAGER
-+ help
-+ PCBC: Propagating Cipher Block Chaining mode
-+ This block cipher algorithm is required for RxRPC.
-+
-+config CRYPTO_XTS
-+ tristate "XTS support (EXPERIMENTAL)"
-+ depends on EXPERIMENTAL
-+ select CRYPTO_BLKCIPHER
-+ select CRYPTO_MANAGER
-+ select CRYPTO_GF128MUL
-+ help
-+ XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
-+ key size 256, 384 or 512 bits. This implementation currently
-+ can't handle a sectorsize which is not a multiple of 16 bytes.
-+
-+config CRYPTO_FPU
-+ tristate
-+ select CRYPTO_BLKCIPHER
-+ select CRYPTO_MANAGER
-+
-+comment "Hash modes"
-+
-+config CRYPTO_HMAC
-+ tristate "HMAC support"
-+ select CRYPTO_HASH
-+ select CRYPTO_MANAGER
-+ help
-+ HMAC: Keyed-Hashing for Message Authentication (RFC2104).
-+ This is required for IPSec.
-+
-+config CRYPTO_XCBC
-+ tristate "XCBC support"
-+ depends on EXPERIMENTAL
-+ select CRYPTO_HASH
-+ select CRYPTO_MANAGER
-+ help
-+ XCBC: Keyed-Hashing with encryption algorithm
-+ http://www.ietf.org/rfc/rfc3566.txt
-+ http://csrc.nist.gov/encryption/modes/proposedmodes/
-+ xcbc-mac/xcbc-mac-spec.pdf
-+
-+config CRYPTO_VMAC
-+ tristate "VMAC support"
-+ depends on EXPERIMENTAL
-+ select CRYPTO_HASH
-+ select CRYPTO_MANAGER
-+ help
-+ VMAC is a message authentication algorithm designed for
-+ very high speed on 64-bit architectures.
-+
-+ See also:
-+ <http://fastcrypto.org/vmac>
-+
-+comment "Digest"
-+
-+config CRYPTO_CRC32C
-+ tristate "CRC32c CRC algorithm"
-+ select CRYPTO_HASH
-+ help
-+ Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
-+ by iSCSI for header and data digests and by others.
-+ See Castagnoli93. Module will be crc32c.
-+
-+config CRYPTO_CRC32C_INTEL
-+ tristate "CRC32c INTEL hardware acceleration"
-+ depends on X86
-+ select CRYPTO_HASH
-+ help
-+ In Intel processor with SSE4.2 supported, the processor will
-+ support CRC32C implementation using hardware accelerated CRC32
-+ instruction. This option will create 'crc32c-intel' module,
-+ which will enable any routine to use the CRC32 instruction to
-+ gain performance compared with software implementation.
-+ Module will be crc32c-intel.
-+
-+config CRYPTO_GHASH
-+ tristate "GHASH digest algorithm"
-+ select CRYPTO_SHASH
-+ select CRYPTO_GF128MUL
-+ help
-+ GHASH is message digest algorithm for GCM (Galois/Counter Mode).
-+
-+config CRYPTO_MD4
-+ tristate "MD4 digest algorithm"
-+ select CRYPTO_HASH
-+ help
-+ MD4 message digest algorithm (RFC1320).
-+
-+config CRYPTO_MD5
-+ tristate "MD5 digest algorithm"
-+ select CRYPTO_HASH
-+ help
-+ MD5 message digest algorithm (RFC1321).
-+
-+config CRYPTO_MICHAEL_MIC
-+ tristate "Michael MIC keyed digest algorithm"
-+ select CRYPTO_HASH
-+ help
-+ Michael MIC is used for message integrity protection in TKIP
-+ (IEEE 802.11i). This algorithm is required for TKIP, but it
-+ should not be used for other purposes because of the weakness
-+ of the algorithm.
-+
-+config CRYPTO_RMD128
-+ tristate "RIPEMD-128 digest algorithm"
-+ select CRYPTO_HASH
-+ help
-+ RIPEMD-128 (ISO/IEC 10118-3:2004).
-+
-+ RIPEMD-128 is a 128-bit cryptographic hash function. It should only
-+ to be used as a secure replacement for RIPEMD. For other use cases
-+ RIPEMD-160 should be used.
-+
-+ Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
-+ See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
-+
-+config CRYPTO_RMD160
-+ tristate "RIPEMD-160 digest algorithm"
-+ select CRYPTO_HASH
-+ help
-+ RIPEMD-160 (ISO/IEC 10118-3:2004).
-+
-+ RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
-+ to be used as a secure replacement for the 128-bit hash functions
-+ MD4, MD5 and it's predecessor RIPEMD
-+ (not to be confused with RIPEMD-128).
-+
-+ It's speed is comparable to SHA1 and there are no known attacks
-+ against RIPEMD-160.
-+
-+ Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
-+ See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
-+
-+config CRYPTO_RMD256
-+ tristate "RIPEMD-256 digest algorithm"
-+ select CRYPTO_HASH
-+ help
-+ RIPEMD-256 is an optional extension of RIPEMD-128 with a
-+ 256 bit hash. It is intended for applications that require
-+ longer hash-results, without needing a larger security level
-+ (than RIPEMD-128).
-+
-+ Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
-+ See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
-+
-+config CRYPTO_RMD320
-+ tristate "RIPEMD-320 digest algorithm"
-+ select CRYPTO_HASH
-+ help
-+ RIPEMD-320 is an optional extension of RIPEMD-160 with a
-+ 320 bit hash. It is intended for applications that require
-+ longer hash-results, without needing a larger security level
-+ (than RIPEMD-160).
-+
-+ Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
-+ See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
-+
-+config CRYPTO_SHA1
-+ tristate "SHA1 digest algorithm"
-+ select CRYPTO_HASH
-+ help
-+ SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
-+
-+config CRYPTO_SHA256
-+ tristate "SHA224 and SHA256 digest algorithm"
-+ select CRYPTO_HASH
-+ help
-+ SHA256 secure hash standard (DFIPS 180-2).
-+
-+ This version of SHA implements a 256 bit hash with 128 bits of
-+ security against collision attacks.
-+
-+ This code also includes SHA-224, a 224 bit hash with 112 bits
-+ of security against collision attacks.
-+
-+config CRYPTO_SHA512
-+ tristate "SHA384 and SHA512 digest algorithms"
-+ select CRYPTO_HASH
-+ help
-+ SHA512 secure hash standard (DFIPS 180-2).
-+
-+ This version of SHA implements a 512 bit hash with 256 bits of
-+ security against collision attacks.
-+
-+ This code also includes SHA-384, a 384 bit hash with 192 bits
-+ of security against collision attacks.
-+
-+config CRYPTO_TGR192
-+ tristate "Tiger digest algorithms"
-+ select CRYPTO_HASH
-+ help
-+ Tiger hash algorithm 192, 160 and 128-bit hashes
-+
-+ Tiger is a hash function optimized for 64-bit processors while
-+ still having decent performance on 32-bit processors.
-+ Tiger was developed by Ross Anderson and Eli Biham.
-+
-+ See also:
-+ <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
-+
-+config CRYPTO_WP512
-+ tristate "Whirlpool digest algorithms"
-+ select CRYPTO_HASH
-+ help
-+ Whirlpool hash algorithm 512, 384 and 256-bit hashes
-+
-+ Whirlpool-512 is part of the NESSIE cryptographic primitives.
-+ Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
-+
-+ See also:
-+ <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
-+
-+config CRYPTO_GHASH_CLMUL_NI_INTEL
-+ tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
-+ depends on (X86 || UML_X86) && 64BIT
-+ select CRYPTO_SHASH
-+ select CRYPTO_CRYPTD
-+ help
-+ GHASH is message digest algorithm for GCM (Galois/Counter Mode).
-+ The implementation is accelerated by CLMUL-NI of Intel.
-+
-+comment "Ciphers"
-+
-+config CRYPTO_AES
-+ tristate "AES cipher algorithms"
-+ select CRYPTO_ALGAPI
-+ help
-+ AES cipher algorithms (FIPS-197). AES uses the Rijndael
-+ algorithm.
-+
-+ Rijndael appears to be consistently a very good performer in
-+ both hardware and software across a wide range of computing
-+ environments regardless of its use in feedback or non-feedback
-+ modes. Its key setup time is excellent, and its key agility is
-+ good. Rijndael's very low memory requirements make it very well
-+ suited for restricted-space environments, in which it also
-+ demonstrates excellent performance. Rijndael's operations are
-+ among the easiest to defend against power and timing attacks.
-+
-+ The AES specifies three key sizes: 128, 192 and 256 bits
-+
-+ See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
-+
-+config CRYPTO_AES_586
-+ tristate "AES cipher algorithms (i586)"
-+ depends on (X86 || UML_X86) && !64BIT
-+ select CRYPTO_ALGAPI
-+ select CRYPTO_AES
-+ help
-+ AES cipher algorithms (FIPS-197). AES uses the Rijndael
-+ algorithm.
-+
-+ Rijndael appears to be consistently a very good performer in
-+ both hardware and software across a wide range of computing
-+ environments regardless of its use in feedback or non-feedback
-+ modes. Its key setup time is excellent, and its key agility is
-+ good. Rijndael's very low memory requirements make it very well
-+ suited for restricted-space environments, in which it also
-+ demonstrates excellent performance. Rijndael's operations are
-+ among the easiest to defend against power and timing attacks.
-+
-+ The AES specifies three key sizes: 128, 192 and 256 bits
-+
-+ See <http://csrc.nist.gov/encryption/aes/> for more information.
-+
-+config CRYPTO_AES_X86_64
-+ tristate "AES cipher algorithms (x86_64)"
-+ depends on (X86 || UML_X86) && 64BIT
-+ select CRYPTO_ALGAPI
-+ select CRYPTO_AES
-+ help
-+ AES cipher algorithms (FIPS-197). AES uses the Rijndael
-+ algorithm.
-+
-+ Rijndael appears to be consistently a very good performer in
-+ both hardware and software across a wide range of computing
-+ environments regardless of its use in feedback or non-feedback
-+ modes. Its key setup time is excellent, and its key agility is
-+ good. Rijndael's very low memory requirements make it very well
-+ suited for restricted-space environments, in which it also
-+ demonstrates excellent performance. Rijndael's operations are
-+ among the easiest to defend against power and timing attacks.
-+
-+ The AES specifies three key sizes: 128, 192 and 256 bits
-+
-+ See <http://csrc.nist.gov/encryption/aes/> for more information.
-+
-+config CRYPTO_AES_NI_INTEL
-+ tristate "AES cipher algorithms (AES-NI)"
-+ depends on (X86 || UML_X86)
-+ select CRYPTO_AES_X86_64 if 64BIT
-+ select CRYPTO_AES_586 if !64BIT
-+ select CRYPTO_CRYPTD
-+ select CRYPTO_ALGAPI
-+ select CRYPTO_FPU
-+ help
-+ Use Intel AES-NI instructions for AES algorithm.
-+
-+ AES cipher algorithms (FIPS-197). AES uses the Rijndael
-+ algorithm.
-+
-+ Rijndael appears to be consistently a very good performer in
-+ both hardware and software across a wide range of computing
-+ environments regardless of its use in feedback or non-feedback
-+ modes. Its key setup time is excellent, and its key agility is
-+ good. Rijndael's very low memory requirements make it very well
-+ suited for restricted-space environments, in which it also
-+ demonstrates excellent performance. Rijndael's operations are
-+ among the easiest to defend against power and timing attacks.
-+
-+ The AES specifies three key sizes: 128, 192 and 256 bits
-+
-+ See <http://csrc.nist.gov/encryption/aes/> for more information.
-+
-+ In addition to AES cipher algorithm support, the acceleration
-+ for some popular block cipher mode is supported too, including
-+ ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
-+ acceleration for CTR.
-+
-+config CRYPTO_ANUBIS
-+ tristate "Anubis cipher algorithm"
-+ select CRYPTO_ALGAPI
-+ help
-+ Anubis cipher algorithm.
-+
-+ Anubis is a variable key length cipher which can use keys from
-+ 128 bits to 320 bits in length. It was evaluated as a entrant
-+ in the NESSIE competition.
-+
-+ See also:
-+ <https://www.cosic.esat.kuleuven.be/nessie/reports/>
-+ <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
-+
-+config CRYPTO_ARC4
-+ tristate "ARC4 cipher algorithm"
-+ select CRYPTO_ALGAPI
-+ help
-+ ARC4 cipher algorithm.
-+
-+ ARC4 is a stream cipher using keys ranging from 8 bits to 2048
-+ bits in length. This algorithm is required for driver-based
-+ WEP, but it should not be for other purposes because of the
-+ weakness of the algorithm.
-+
-+config CRYPTO_BLOWFISH
-+ tristate "Blowfish cipher algorithm"
-+ select CRYPTO_ALGAPI
-+ help
-+ Blowfish cipher algorithm, by Bruce Schneier.
-+
-+ This is a variable key length cipher which can use keys from 32
-+ bits to 448 bits in length. It's fast, simple and specifically
-+ designed for use on "large microprocessors".
-+
-+ See also:
-+ <http://www.schneier.com/blowfish.html>
-+
-+config CRYPTO_CAMELLIA
-+ tristate "Camellia cipher algorithms"
-+ depends on CRYPTO
-+ select CRYPTO_ALGAPI
-+ help
-+ Camellia cipher algorithms module.
-+
-+ Camellia is a symmetric key block cipher developed jointly
-+ at NTT and Mitsubishi Electric Corporation.
-+
-+ The Camellia specifies three key sizes: 128, 192 and 256 bits.
-+
-+ See also:
-+ <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
-+
-+config CRYPTO_CAST5
-+ tristate "CAST5 (CAST-128) cipher algorithm"
-+ select CRYPTO_ALGAPI
-+ help
-+ The CAST5 encryption algorithm (synonymous with CAST-128) is
-+ described in RFC2144.
-+
-+config CRYPTO_CAST6
-+ tristate "CAST6 (CAST-256) cipher algorithm"
-+ select CRYPTO_ALGAPI
-+ help
-+ The CAST6 encryption algorithm (synonymous with CAST-256) is
-+ described in RFC2612.
-+
-+config CRYPTO_DES
-+ tristate "DES and Triple DES EDE cipher algorithms"
-+ select CRYPTO_ALGAPI
-+ help
-+ DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
-+
-+config CRYPTO_FCRYPT
-+ tristate "FCrypt cipher algorithm"
-+ select CRYPTO_ALGAPI
-+ select CRYPTO_BLKCIPHER
-+ help
-+ FCrypt algorithm used by RxRPC.
-+
-+config CRYPTO_KHAZAD
-+ tristate "Khazad cipher algorithm"
-+ select CRYPTO_ALGAPI
-+ help
-+ Khazad cipher algorithm.
-+
-+ Khazad was a finalist in the initial NESSIE competition. It is
-+ an algorithm optimized for 64-bit processors with good performance
-+ on 32-bit processors. Khazad uses an 128 bit key size.
-+
-+ See also:
-+ <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
-+
-+config CRYPTO_SALSA20
-+ tristate "Salsa20 stream cipher algorithm (EXPERIMENTAL)"
-+ depends on EXPERIMENTAL
-+ select CRYPTO_BLKCIPHER
-+ help
-+ Salsa20 stream cipher algorithm.
-+
-+ Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
-+ Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
-+
-+ The Salsa20 stream cipher algorithm is designed by Daniel J.
-+ Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
-+
-+config CRYPTO_SALSA20_586
-+ tristate "Salsa20 stream cipher algorithm (i586) (EXPERIMENTAL)"
-+ depends on (X86 || UML_X86) && !64BIT
-+ depends on EXPERIMENTAL
-+ select CRYPTO_BLKCIPHER
-+ help
-+ Salsa20 stream cipher algorithm.
-+
-+ Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
-+ Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
-+
-+ The Salsa20 stream cipher algorithm is designed by Daniel J.
-+ Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
-+
-+config CRYPTO_SALSA20_X86_64
-+ tristate "Salsa20 stream cipher algorithm (x86_64) (EXPERIMENTAL)"
-+ depends on (X86 || UML_X86) && 64BIT
-+ depends on EXPERIMENTAL
-+ select CRYPTO_BLKCIPHER
-+ help
-+ Salsa20 stream cipher algorithm.
-+
-+ Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
-+ Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
-+
-+ The Salsa20 stream cipher algorithm is designed by Daniel J.
-+ Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
-+
-+config CRYPTO_SEED
-+ tristate "SEED cipher algorithm"
-+ select CRYPTO_ALGAPI
-+ help
-+ SEED cipher algorithm (RFC4269).
-+
-+ SEED is a 128-bit symmetric key block cipher that has been
-+ developed by KISA (Korea Information Security Agency) as a
-+ national standard encryption algorithm of the Republic of Korea.
-+ It is a 16 round block cipher with the key size of 128 bit.
-+
-+ See also:
-+ <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
-+
-+config CRYPTO_SERPENT
-+ tristate "Serpent cipher algorithm"
-+ select CRYPTO_ALGAPI
-+ help
-+ Serpent cipher algorithm, by Anderson, Biham & Knudsen.
-+
-+ Keys are allowed to be from 0 to 256 bits in length, in steps
-+ of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
-+ variant of Serpent for compatibility with old kerneli.org code.
-+
-+ See also:
-+ <http://www.cl.cam.ac.uk/~rja14/serpent.html>
-+
-+config CRYPTO_TEA
-+ tristate "TEA, XTEA and XETA cipher algorithms"
-+ select CRYPTO_ALGAPI
-+ help
-+ TEA cipher algorithm.
-+
-+ Tiny Encryption Algorithm is a simple cipher that uses
-+ many rounds for security. It is very fast and uses
-+ little memory.
-+
-+ Xtendend Tiny Encryption Algorithm is a modification to
-+ the TEA algorithm to address a potential key weakness
-+ in the TEA algorithm.
-+
-+ Xtendend Encryption Tiny Algorithm is a mis-implementation
-+ of the XTEA algorithm for compatibility purposes.
-+
-+config CRYPTO_TWOFISH
-+ tristate "Twofish cipher algorithm"
-+ select CRYPTO_ALGAPI
-+ select CRYPTO_TWOFISH_COMMON
-+ help
-+ Twofish cipher algorithm.
-+
-+ Twofish was submitted as an AES (Advanced Encryption Standard)
-+ candidate cipher by researchers at CounterPane Systems. It is a
-+ 16 round block cipher supporting key sizes of 128, 192, and 256
-+ bits.
-+
-+ See also:
-+ <http://www.schneier.com/twofish.html>
-+
-+config CRYPTO_TWOFISH_COMMON
-+ tristate
-+ help
-+ Common parts of the Twofish cipher algorithm shared by the
-+ generic c and the assembler implementations.
-+
-+config CRYPTO_TWOFISH_586
-+ tristate "Twofish cipher algorithms (i586)"
-+ depends on (X86 || UML_X86) && !64BIT
-+ select CRYPTO_ALGAPI
-+ select CRYPTO_TWOFISH_COMMON
-+ help
-+ Twofish cipher algorithm.
-+
-+ Twofish was submitted as an AES (Advanced Encryption Standard)
-+ candidate cipher by researchers at CounterPane Systems. It is a
-+ 16 round block cipher supporting key sizes of 128, 192, and 256
-+ bits.
-+
-+ See also:
-+ <http://www.schneier.com/twofish.html>
-+
-+config CRYPTO_TWOFISH_X86_64
-+ tristate "Twofish cipher algorithm (x86_64)"
-+ depends on (X86 || UML_X86) && 64BIT
-+ select CRYPTO_ALGAPI
-+ select CRYPTO_TWOFISH_COMMON
-+ help
-+ Twofish cipher algorithm (x86_64).
-+
-+ Twofish was submitted as an AES (Advanced Encryption Standard)
-+ candidate cipher by researchers at CounterPane Systems. It is a
-+ 16 round block cipher supporting key sizes of 128, 192, and 256
-+ bits.
-+
-+ See also:
-+ <http://www.schneier.com/twofish.html>
-+
-+comment "Compression"
-+
-+config CRYPTO_DEFLATE
-+ tristate "Deflate compression algorithm"
-+ select CRYPTO_ALGAPI
-+ select ZLIB_INFLATE
-+ select ZLIB_DEFLATE
-+ help
-+ This is the Deflate algorithm (RFC1951), specified for use in
-+ IPSec with the IPCOMP protocol (RFC3173, RFC2394).
-+
-+ You will most probably want this if using IPSec.
-+
-+config CRYPTO_ZLIB
-+ tristate "Zlib compression algorithm"
-+ select CRYPTO_PCOMP
-+ select ZLIB_INFLATE
-+ select ZLIB_DEFLATE
-+ select NLATTR
-+ help
-+ This is the zlib algorithm.
-+
-+config CRYPTO_LZO
-+ tristate "LZO compression algorithm"
-+ select CRYPTO_ALGAPI
-+ select LZO_COMPRESS
-+ select LZO_DECOMPRESS
-+ help
-+ This is the LZO algorithm.
-+
-+comment "Random Number Generation"
-+
-+config CRYPTO_ANSI_CPRNG
-+ tristate "Pseudo Random Number Generation for Cryptographic modules"
-+ default m
-+ select CRYPTO_AES
-+ select CRYPTO_RNG
-+ help
-+ This option enables the generic pseudo random number generator
-+ for cryptographic modules. Uses the Algorithm specified in
-+ ANSI X9.31 A.2.4. Note that this option must be enabled if
-+ CRYPTO_FIPS is selected
-+
-+config CRYPTO_USER_API
-+ tristate
-+
-+config CRYPTO_USER_API_HASH
-+ tristate "User-space interface for hash algorithms"
-+ depends on NET
-+ select CRYPTO_HASH
-+ select CRYPTO_USER_API
-+ help
-+ This option enables the user-spaces interface for hash
-+ algorithms.
-+
-+config CRYPTO_USER_API_SKCIPHER
-+ tristate "User-space interface for symmetric key cipher algorithms"
-+ depends on NET
-+ select CRYPTO_BLKCIPHER
-+ select CRYPTO_USER_API
-+ help
-+ This option enables the user-spaces interface for symmetric
-+ key cipher algorithms.
-+
-+source "drivers/crypto/Kconfig"
-+
-+endif # if CRYPTO
-diff -Nur linux-2.6.39.orig/crypto/Makefile linux-2.6.39/crypto/Makefile
---- linux-2.6.39.orig/crypto/Makefile 2011-05-19 06:06:34.000000000 +0200
-+++ linux-2.6.39/crypto/Makefile 2011-08-01 14:38:18.000000000 +0200
-@@ -89,6 +89,8 @@
- obj-$(CONFIG_CRYPTO_USER_API_HASH) += algif_hash.o
- obj-$(CONFIG_CRYPTO_USER_API_SKCIPHER) += algif_skcipher.o
-
-+obj-$(CONFIG_OCF_OCF) += ocf/
-+
- #
- # generic algorithms and the async_tx api
- #
-diff -Nur linux-2.6.39.orig/crypto/Makefile.orig linux-2.6.39/crypto/Makefile.orig
---- linux-2.6.39.orig/crypto/Makefile.orig 1970-01-01 01:00:00.000000000 +0100
-+++ linux-2.6.39/crypto/Makefile.orig 2011-08-01 14:38:18.000000000 +0200
-@@ -0,0 +1,96 @@
-+#
-+# Cryptographic API
-+#
-+
-+obj-$(CONFIG_CRYPTO) += crypto.o
-+crypto-y := api.o cipher.o compress.o
-+
-+obj-$(CONFIG_CRYPTO_WORKQUEUE) += crypto_wq.o
-+
-+obj-$(CONFIG_CRYPTO_FIPS) += fips.o
-+
-+crypto_algapi-$(CONFIG_PROC_FS) += proc.o
-+crypto_algapi-y := algapi.o scatterwalk.o $(crypto_algapi-y)
-+obj-$(CONFIG_CRYPTO_ALGAPI2) += crypto_algapi.o
-+
-+obj-$(CONFIG_CRYPTO_AEAD2) += aead.o
-+
-+crypto_blkcipher-y := ablkcipher.o
-+crypto_blkcipher-y += blkcipher.o
-+obj-$(CONFIG_CRYPTO_BLKCIPHER2) += crypto_blkcipher.o
-+obj-$(CONFIG_CRYPTO_BLKCIPHER2) += chainiv.o
-+obj-$(CONFIG_CRYPTO_BLKCIPHER2) += eseqiv.o
-+obj-$(CONFIG_CRYPTO_SEQIV) += seqiv.o
-+
-+crypto_hash-y += ahash.o
-+crypto_hash-y += shash.o
-+obj-$(CONFIG_CRYPTO_HASH2) += crypto_hash.o
-+
-+obj-$(CONFIG_CRYPTO_PCOMP2) += pcompress.o
-+
-+cryptomgr-y := algboss.o testmgr.o
-+
-+obj-$(CONFIG_CRYPTO_MANAGER2) += cryptomgr.o
-+obj-$(CONFIG_CRYPTO_HMAC) += hmac.o
-+obj-$(CONFIG_CRYPTO_VMAC) += vmac.o
-+obj-$(CONFIG_CRYPTO_XCBC) += xcbc.o
-+obj-$(CONFIG_CRYPTO_NULL) += crypto_null.o
-+obj-$(CONFIG_CRYPTO_MD4) += md4.o
-+obj-$(CONFIG_CRYPTO_MD5) += md5.o
-+obj-$(CONFIG_CRYPTO_RMD128) += rmd128.o
-+obj-$(CONFIG_CRYPTO_RMD160) += rmd160.o
-+obj-$(CONFIG_CRYPTO_RMD256) += rmd256.o
-+obj-$(CONFIG_CRYPTO_RMD320) += rmd320.o
-+obj-$(CONFIG_CRYPTO_SHA1) += sha1_generic.o
-+obj-$(CONFIG_CRYPTO_SHA256) += sha256_generic.o
-+obj-$(CONFIG_CRYPTO_SHA512) += sha512_generic.o
-+obj-$(CONFIG_CRYPTO_WP512) += wp512.o
-+obj-$(CONFIG_CRYPTO_TGR192) += tgr192.o
-+obj-$(CONFIG_CRYPTO_GF128MUL) += gf128mul.o
-+obj-$(CONFIG_CRYPTO_ECB) += ecb.o
-+obj-$(CONFIG_CRYPTO_CBC) += cbc.o
-+obj-$(CONFIG_CRYPTO_PCBC) += pcbc.o
-+obj-$(CONFIG_CRYPTO_CTS) += cts.o
-+obj-$(CONFIG_CRYPTO_LRW) += lrw.o
-+obj-$(CONFIG_CRYPTO_XTS) += xts.o
-+obj-$(CONFIG_CRYPTO_CTR) += ctr.o
-+obj-$(CONFIG_CRYPTO_GCM) += gcm.o
-+obj-$(CONFIG_CRYPTO_CCM) += ccm.o
-+obj-$(CONFIG_CRYPTO_PCRYPT) += pcrypt.o
-+obj-$(CONFIG_CRYPTO_CRYPTD) += cryptd.o
-+obj-$(CONFIG_CRYPTO_DES) += des_generic.o
-+obj-$(CONFIG_CRYPTO_FCRYPT) += fcrypt.o
-+obj-$(CONFIG_CRYPTO_BLOWFISH) += blowfish.o
-+obj-$(CONFIG_CRYPTO_TWOFISH) += twofish_generic.o
-+obj-$(CONFIG_CRYPTO_TWOFISH_COMMON) += twofish_common.o
-+obj-$(CONFIG_CRYPTO_SERPENT) += serpent.o
-+obj-$(CONFIG_CRYPTO_AES) += aes_generic.o
-+obj-$(CONFIG_CRYPTO_CAMELLIA) += camellia.o
-+obj-$(CONFIG_CRYPTO_CAST5) += cast5.o
-+obj-$(CONFIG_CRYPTO_CAST6) += cast6.o
-+obj-$(CONFIG_CRYPTO_ARC4) += arc4.o
-+obj-$(CONFIG_CRYPTO_TEA) += tea.o
-+obj-$(CONFIG_CRYPTO_KHAZAD) += khazad.o
-+obj-$(CONFIG_CRYPTO_ANUBIS) += anubis.o
-+obj-$(CONFIG_CRYPTO_SEED) += seed.o
-+obj-$(CONFIG_CRYPTO_SALSA20) += salsa20_generic.o
-+obj-$(CONFIG_CRYPTO_DEFLATE) += deflate.o
-+obj-$(CONFIG_CRYPTO_ZLIB) += zlib.o
-+obj-$(CONFIG_CRYPTO_MICHAEL_MIC) += michael_mic.o
-+obj-$(CONFIG_CRYPTO_CRC32C) += crc32c.o
-+obj-$(CONFIG_CRYPTO_AUTHENC) += authenc.o authencesn.o
-+obj-$(CONFIG_CRYPTO_LZO) += lzo.o
-+obj-$(CONFIG_CRYPTO_RNG2) += rng.o
-+obj-$(CONFIG_CRYPTO_RNG2) += krng.o
-+obj-$(CONFIG_CRYPTO_ANSI_CPRNG) += ansi_cprng.o
-+obj-$(CONFIG_CRYPTO_TEST) += tcrypt.o
-+obj-$(CONFIG_CRYPTO_GHASH) += ghash-generic.o
-+obj-$(CONFIG_CRYPTO_USER_API) += af_alg.o
-+obj-$(CONFIG_CRYPTO_USER_API_HASH) += algif_hash.o
-+obj-$(CONFIG_CRYPTO_USER_API_SKCIPHER) += algif_skcipher.o
-+
-+#
-+# generic algorithms and the async_tx api
-+#
-+obj-$(CONFIG_XOR_BLOCKS) += xor.o
-+obj-$(CONFIG_ASYNC_CORE) += async_tx/
-diff -Nur linux-2.6.39.orig/crypto/ocf/Config.in linux-2.6.39/crypto/ocf/Config.in
---- linux-2.6.39.orig/crypto/ocf/Config.in 1970-01-01 01:00:00.000000000 +0100
-+++ linux-2.6.39/crypto/ocf/Config.in 2011-08-01 14:38:18.000000000 +0200
-@@ -0,0 +1,36 @@
-+#############################################################################
-+
-+mainmenu_option next_comment
-+comment 'OCF Configuration'
-+tristate 'OCF (Open Cryptograhic Framework)' CONFIG_OCF_OCF
-+dep_mbool ' enable fips RNG checks (fips check on RNG data before use)' \
-+ CONFIG_OCF_FIPS $CONFIG_OCF_OCF
-+dep_mbool ' enable harvesting entropy for /dev/random' \
-+ CONFIG_OCF_RANDOMHARVEST $CONFIG_OCF_OCF
-+dep_tristate ' cryptodev (user space support)' \
-+ CONFIG_OCF_CRYPTODEV $CONFIG_OCF_OCF
-+dep_tristate ' cryptosoft (software crypto engine)' \
-+ CONFIG_OCF_CRYPTOSOFT $CONFIG_OCF_OCF
-+dep_tristate ' safenet (HW crypto engine)' \
-+ CONFIG_OCF_SAFE $CONFIG_OCF_OCF
-+dep_tristate ' IXP4xx (HW crypto engine)' \
-+ CONFIG_OCF_IXP4XX $CONFIG_OCF_OCF
-+dep_mbool ' Enable IXP4xx HW to perform SHA1 and MD5 hashing (very slow)' \
-+ CONFIG_OCF_IXP4XX_SHA1_MD5 $CONFIG_OCF_IXP4XX
-+dep_tristate ' hifn (HW crypto engine)' \
-+ CONFIG_OCF_HIFN $CONFIG_OCF_OCF
-+dep_tristate ' talitos (HW crypto engine)' \
-+ CONFIG_OCF_TALITOS $CONFIG_OCF_OCF
-+dep_tristate ' pasemi (HW crypto engine)' \
-+ CONFIG_OCF_PASEMI $CONFIG_OCF_OCF
-+dep_tristate ' ep80579 (HW crypto engine)' \
-+ CONFIG_OCF_EP80579 $CONFIG_OCF_OCF
-+dep_tristate ' Micronas c7108 (HW crypto engine)' \
-+ CONFIG_OCF_C7108 $CONFIG_OCF_OCF
-+dep_tristate ' ocfnull (does no crypto)' \
-+ CONFIG_OCF_OCFNULL $CONFIG_OCF_OCF
-+dep_tristate ' ocf-bench (HW crypto in-kernel benchmark)' \
-+ CONFIG_OCF_BENCH $CONFIG_OCF_OCF
-+endmenu
-+
-+#############################################################################
-diff -Nur linux-2.6.39.orig/crypto/ocf/Kconfig linux-2.6.39/crypto/ocf/Kconfig
---- linux-2.6.39.orig/crypto/ocf/Kconfig 1970-01-01 01:00:00.000000000 +0100
-+++ linux-2.6.39/crypto/ocf/Kconfig 2011-08-01 14:38:18.000000000 +0200
-@@ -0,0 +1,119 @@
-+menu "OCF Configuration"
-+
-+config OCF_OCF
-+ tristate "OCF (Open Cryptograhic Framework)"
-+ help
-+ A linux port of the OpenBSD/FreeBSD crypto framework.
-+
-+config OCF_RANDOMHARVEST
-+ bool "crypto random --- harvest entropy for /dev/random"
-+ depends on OCF_OCF
-+ help
-+ Includes code to harvest random numbers from devices that support it.
-+
-+config OCF_FIPS
-+ bool "enable fips RNG checks"
-+ depends on OCF_OCF && OCF_RANDOMHARVEST
-+ help
-+ Run all RNG provided data through a fips check before
-+ adding it /dev/random's entropy pool.
-+
-+config OCF_CRYPTODEV