/* Copyright (C) 2002-2007, 2008 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 2002. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include "pthreadP.h" #include #include /* We need to build this function with optimization to avoid * lll_timedlock erroring out with * error: can't find a register in class ‘GENERAL_REGS’ while reloading ‘asm’ */ int #ifndef __OPTIMIZE__ attribute_optimize("Os") #endif pthread_mutex_timedlock ( pthread_mutex_t *mutex, const struct timespec *abstime) { int oldval; pid_t id = THREAD_GETMEM (THREAD_SELF, tid); int result = 0; /* We must not check ABSTIME here. If the thread does not block abstime must not be checked for a valid value. */ switch (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex), PTHREAD_MUTEX_TIMED_NP)) { /* Recursive mutex. */ case PTHREAD_MUTEX_RECURSIVE_NP: /* Check whether we already hold the mutex. */ if (mutex->__data.__owner == id) { /* Just bump the counter. */ if (__builtin_expect (mutex->__data.__count + 1 == 0, 0)) /* Overflow of the counter. */ return EAGAIN; ++mutex->__data.__count; goto out; } /* We have to get the mutex. */ result = lll_timedlock (mutex->__data.__lock, abstime, PTHREAD_MUTEX_PSHARED (mutex)); if (result != 0) goto out; /* Only locked once so far. */ mutex->__data.__count = 1; break; /* Error checking mutex. */ case PTHREAD_MUTEX_ERRORCHECK_NP: /* Check whether we already hold the mutex. */ if (__builtin_expect (mutex->__data.__owner == id, 0)) return EDEADLK; /* FALLTHROUGH */ case PTHREAD_MUTEX_TIMED_NP: simple: /* Normal mutex. */ result = lll_timedlock (mutex->__data.__lock, abstime, PTHREAD_MUTEX_PSHARED (mutex)); break; case PTHREAD_MUTEX_ADAPTIVE_NP: if (! __is_smp) goto simple; if (lll_trylock (mutex->__data.__lock) != 0) { int cnt = 0; int max_cnt = MIN (MAX_ADAPTIVE_COUNT, mutex->__data.__spins * 2 + 10); do { if (cnt++ >= max_cnt) { result = lll_timedlock (mutex->__data.__lock, abstime, PTHREAD_MUTEX_PSHARED (mutex)); break; } #ifdef BUSY_WAIT_NOP BUSY_WAIT_NOP; #endif } while (lll_trylock (mutex->__data.__lock) != 0); mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8; } break; case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP: case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP: case PTHREAD_MUTEX_ROBUST_NORMAL_NP: case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP: THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, &mutex->__data.__list.__next); oldval = mutex->__data.__lock; do { again: if ((oldval & FUTEX_OWNER_DIED) != 0) { /* The previous owner died. Try locking the mutex. */ int newval = id | (oldval & FUTEX_WAITERS); newval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, newval, oldval); if (newval != oldval) { oldval = newval; goto again; } /* We got the mutex. */ mutex->__data.__count = 1; /* But it is inconsistent unless marked otherwise. */ mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; ENQUEUE_MUTEX (mutex); THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); /* Note that we deliberately exit here. If we fall through to the end of the function __nusers would be incremented which is not correct because the old owner has to be discounted. */ return EOWNERDEAD; } /* Check whether we already hold the mutex. */ if (__builtin_expect ((oldval & FUTEX_TID_MASK) == id, 0)) { int kind = PTHREAD_MUTEX_TYPE (mutex); if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP) { THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); return EDEADLK; } if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP) { THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); /* Just bump the counter. */ if (__builtin_expect (mutex->__data.__count + 1 == 0, 0)) /* Overflow of the counter. */ return EAGAIN; ++mutex->__data.__count; return 0; } } result = lll_robust_timedlock (mutex->__data.__lock, abstime, id, PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); if (__builtin_expect (mutex->__data.__owner == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) { /* This mutex is now not recoverable. */ mutex->__data.__count = 0; lll_unlock (mutex->__data.__lock, PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); return ENOTRECOVERABLE; } if (result == ETIMEDOUT || result == EINVAL) goto out; oldval = result; } while ((oldval & FUTEX_OWNER_DIED) != 0); mutex->__data.__count = 1; ENQUEUE_MUTEX (mutex); THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); break; case PTHREAD_MUTEX_PI_RECURSIVE_NP: case PTHREAD_MUTEX_PI_ERRORCHECK_NP: case PTHREAD_MUTEX_PI_NORMAL_NP: case PTHREAD_MUTEX_PI_ADAPTIVE_NP: case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP: case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP: case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP: case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP: { int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP; int robust = mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP; if (robust) /* Note: robust PI futexes are signaled by setting bit 0. */ THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, (void *) (((uintptr_t) &mutex->__data.__list.__next) | 1)); oldval = mutex->__data.__lock; /* Check whether we already hold the mutex. */ if (__builtin_expect ((oldval & FUTEX_TID_MASK) == id, 0)) { if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) { THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); return EDEADLK; } if (kind == PTHREAD_MUTEX_RECURSIVE_NP) { THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); /* Just bump the counter. */ if (__builtin_expect (mutex->__data.__count + 1 == 0, 0)) /* Overflow of the counter. */ return EAGAIN; ++mutex->__data.__count; return 0; } } oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, id, 0); if (oldval != 0) { /* The mutex is locked. The kernel will now take care of everything. The timeout value must be a relative value. Convert it. */ int private = (robust ? PTHREAD_ROBUST_MUTEX_PSHARED (mutex) : PTHREAD_MUTEX_PSHARED (mutex)); INTERNAL_SYSCALL_DECL (__err); int e = INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock, __lll_private_flag (FUTEX_LOCK_PI, private), 1, abstime); if (INTERNAL_SYSCALL_ERROR_P (e, __err)) { if (INTERNAL_SYSCALL_ERRNO (e, __err) == ETIMEDOUT) return ETIMEDOUT; if (INTERNAL_SYSCALL_ERRNO (e, __err) == ESRCH || INTERNAL_SYSCALL_ERRNO (e, __err) == EDEADLK) { assert (INTERNAL_SYSCALL_ERRNO (e, __err) != EDEADLK || (kind != PTHREAD_MUTEX_ERRORCHECK_NP && kind != PTHREAD_MUTEX_RECURSIVE_NP)); /* ESRCH can happen only for non-robust PI mutexes where the owner of the lock died. */ assert (INTERNAL_SYSCALL_ERRNO (e, __err) != ESRCH || !robust); /* Delay the thread until the timeout is reached. Then return ETIMEDOUT. */ struct timespec reltime; struct timespec now; INTERNAL_SYSCALL (clock_gettime, __err, 2, CLOCK_REALTIME, &now); reltime.tv_sec = abstime->tv_sec - now.tv_sec; reltime.tv_nsec = abstime->tv_nsec - now.tv_nsec; if (reltime.tv_nsec < 0) { reltime.tv_nsec += 1000000000; --reltime.tv_sec; } if (reltime.tv_sec >= 0) while (nanosleep_not_cancel (&reltime, &reltime) != 0) continue; return ETIMEDOUT; } return INTERNAL_SYSCALL_ERRNO (e, __err); } oldval = mutex->__data.__lock; assert (robust || (oldval & FUTEX_OWNER_DIED) == 0); } if (__builtin_expect (oldval & FUTEX_OWNER_DIED, 0)) { atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED); /* We got the mutex. */ mutex->__data.__count = 1; /* But it is inconsistent unless marked otherwise. */ mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; ENQUEUE_MUTEX_PI (mutex); THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); /* Note that we deliberately exit here. If we fall through to the end of the function __nusers would be incremented which is not correct because the old owner has to be discounted. */ return EOWNERDEAD; } if (robust && __builtin_expect (mutex->__data.__owner == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) { /* This mutex is now not recoverable. */ mutex->__data.__count = 0; INTERNAL_SYSCALL_DECL (__err); INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock, __lll_private_flag (FUTEX_UNLOCK_PI, PTHREAD_ROBUST_MUTEX_PSHARED (mutex)), 0, 0); THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); return ENOTRECOVERABLE; } mutex->__data.__count = 1; if (robust) { ENQUEUE_MUTEX_PI (mutex); THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); } } break; case PTHREAD_MUTEX_PP_RECURSIVE_NP: case PTHREAD_MUTEX_PP_ERRORCHECK_NP: case PTHREAD_MUTEX_PP_NORMAL_NP: case PTHREAD_MUTEX_PP_ADAPTIVE_NP: { int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP; oldval = mutex->__data.__lock; /* Check whether we already hold the mutex. */ if (mutex->__data.__owner == id) { if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) return EDEADLK; if (kind == PTHREAD_MUTEX_RECURSIVE_NP) { /* Just bump the counter. */ if (__builtin_expect (mutex->__data.__count + 1 == 0, 0)) /* Overflow of the counter. */ return EAGAIN; ++mutex->__data.__count; return 0; } } int oldprio = -1, ceilval; do { int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) >> PTHREAD_MUTEX_PRIO_CEILING_SHIFT; if (__pthread_current_priority () > ceiling) { result = EINVAL; failpp: if (oldprio != -1) __pthread_tpp_change_priority (oldprio, -1); return result; } result = __pthread_tpp_change_priority (oldprio, ceiling); if (result) return result; ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT; oldprio = ceiling; oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, ceilval | 1, ceilval); if (oldval == ceilval) break; do { oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, ceilval | 2, ceilval | 1); if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval) break; if (oldval != ceilval) { /* Reject invalid timeouts. */ if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000) { result = EINVAL; goto failpp; } struct timeval tv; struct timespec rt; /* Get the current time. */ (void) gettimeofday (&tv, NULL); /* Compute relative timeout. */ rt.tv_sec = abstime->tv_sec - tv.tv_sec; rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000; if (rt.tv_nsec < 0) { rt.tv_nsec += 1000000000; --rt.tv_sec; } /* Already timed out? */ if (rt.tv_sec < 0) { result = ETIMEDOUT; goto failpp; } lll_futex_timed_wait (&mutex->__data.__lock, ceilval | 2, &rt, PTHREAD_MUTEX_PSHARED (mutex)); } } while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, ceilval | 2, ceilval) != ceilval); } while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval); assert (mutex->__data.__owner == 0); mutex->__data.__count = 1; } break; default: /* Correct code cannot set any other type. */ return EINVAL; } if (result == 0) { /* Record the ownership. */ mutex->__data.__owner = id; ++mutex->__data.__nusers; } out: return result; }