/* ynl.c * * Bessel function of second kind of integer order * * * * SYNOPSIS: * * long double x, y, ynl(); * int n; * * y = ynl( n, x ); * * * * DESCRIPTION: * * Returns Bessel function of order n, where n is a * (possibly negative) integer. * * The function is evaluated by forward recurrence on * n, starting with values computed by the routines * y0l() and y1l(). * * If n = 0 or 1 the routine for y0l or y1l is called * directly. * * * * ACCURACY: * * * Absolute error, except relative error when y > 1. * x >= 0, -30 <= n <= +30. * arithmetic domain # trials peak rms * IEEE -30, 30 10000 1.3e-18 1.8e-19 * * * ERROR MESSAGES: * * message condition value returned * ynl singularity x = 0 MAXNUML * ynl overflow MAXNUML * * Spot checked against tables for x, n between 0 and 100. * */ /* Cephes Math Library Release 2.1: December, 1988 Copyright 1984, 1987 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include <math.h> extern long double MAXNUML; #ifdef ANSIPROT extern long double y0l ( long double ); extern long double y1l ( long double ); #else long double y0l(), y1l(); #endif long double ynl( n, x ) int n; long double x; { long double an, anm1, anm2, r; int k, sign; if( n < 0 ) { n = -n; if( (n & 1) == 0 ) /* -1**n */ sign = 1; else sign = -1; } else sign = 1; if( n == 0 ) return( sign * y0l(x) ); if( n == 1 ) return( sign * y1l(x) ); /* test for overflow */ if( x <= 0.0L ) { mtherr( "ynl", SING ); return( -MAXNUML ); } /* forward recurrence on n */ anm2 = y0l(x); anm1 = y1l(x); k = 1; r = 2 * k; do { an = r * anm1 / x - anm2; anm2 = anm1; anm1 = an; r += 2.0L; ++k; } while( k < n ); return( sign * an ); }