/* stdtrl.c * * Student's t distribution * * * * SYNOPSIS: * * long double p, t, stdtrl(); * int k; * * p = stdtrl( k, t ); * * * DESCRIPTION: * * Computes the integral from minus infinity to t of the Student * t distribution with integer k > 0 degrees of freedom: * * t * - * | | * - | 2 -(k+1)/2 * | ( (k+1)/2 ) | ( x ) * ---------------------- | ( 1 + --- ) dx * - | ( k ) * sqrt( k pi ) | ( k/2 ) | * | | * - * -inf. * * Relation to incomplete beta integral: * * 1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z ) * where * z = k/(k + t**2). * * For t < -1.6, this is the method of computation. For higher t, * a direct method is derived from integration by parts. * Since the function is symmetric about t=0, the area under the * right tail of the density is found by calling the function * with -t instead of t. * * ACCURACY: * * Tested at random 1 <= k <= 100. The "domain" refers to t. * Relative error: * arithmetic domain # trials peak rms * IEEE -100,-1.6 10000 5.7e-18 9.8e-19 * IEEE -1.6,100 10000 3.8e-18 1.0e-19 */ /* stdtril.c * * Functional inverse of Student's t distribution * * * * SYNOPSIS: * * long double p, t, stdtril(); * int k; * * t = stdtril( k, p ); * * * DESCRIPTION: * * Given probability p, finds the argument t such that stdtrl(k,t) * is equal to p. * * ACCURACY: * * Tested at random 1 <= k <= 100. The "domain" refers to p: * Relative error: * arithmetic domain # trials peak rms * IEEE 0,1 3500 4.2e-17 4.1e-18 */ /* Cephes Math Library Release 2.3: January, 1995 Copyright 1984, 1995 by Stephen L. Moshier */ #include <math.h> extern long double PIL, MACHEPL, MAXNUML; #ifdef ANSIPROT extern long double sqrtl ( long double ); extern long double atanl ( long double ); extern long double incbetl ( long double, long double, long double ); extern long double incbil ( long double, long double, long double ); extern long double fabsl ( long double ); #else long double sqrtl(), atanl(), incbetl(), incbil(), fabsl(); #endif long double stdtrl( k, t ) int k; long double t; { long double x, rk, z, f, tz, p, xsqk; int j; if( k <= 0 ) { mtherr( "stdtrl", DOMAIN ); return(0.0L); } if( t == 0.0L ) return( 0.5L ); if( t < -1.6L ) { rk = k; z = rk / (rk + t * t); p = 0.5L * incbetl( 0.5L*rk, 0.5L, z ); return( p ); } /* compute integral from -t to + t */ if( t < 0.0L ) x = -t; else x = t; rk = k; /* degrees of freedom */ z = 1.0L + ( x * x )/rk; /* test if k is odd or even */ if( (k & 1) != 0) { /* computation for odd k */ xsqk = x/sqrtl(rk); p = atanl( xsqk ); if( k > 1 ) { f = 1.0L; tz = 1.0L; j = 3; while( (j<=(k-2)) && ( (tz/f) > MACHEPL ) ) { tz *= (j-1)/( z * j ); f += tz; j += 2; } p += f * xsqk/z; } p *= 2.0L/PIL; } else { /* computation for even k */ f = 1.0L; tz = 1.0L; j = 2; while( ( j <= (k-2) ) && ( (tz/f) > MACHEPL ) ) { tz *= (j - 1)/( z * j ); f += tz; j += 2; } p = f * x/sqrtl(z*rk); } /* common exit */ if( t < 0.0L ) p = -p; /* note destruction of relative accuracy */ p = 0.5L + 0.5L * p; return(p); } long double stdtril( k, p ) int k; long double p; { long double t, rk, z; int rflg; if( k <= 0 || p <= 0.0L || p >= 1.0L ) { mtherr( "stdtril", DOMAIN ); return(0.0L); } rk = k; if( p > 0.25L && p < 0.75L ) { if( p == 0.5L ) return( 0.0L ); z = 1.0L - 2.0L * p; z = incbil( 0.5L, 0.5L*rk, fabsl(z) ); t = sqrtl( rk*z/(1.0L-z) ); if( p < 0.5L ) t = -t; return( t ); } rflg = -1; if( p >= 0.5L) { p = 1.0L - p; rflg = 1; } z = incbil( 0.5L*rk, 0.5L, 2.0L*p ); if( MAXNUML * z < rk ) return(rflg* MAXNUML); t = sqrtl( rk/z - rk ); return( rflg * t ); }