/* fdtrl.c * * F distribution, long double precision * * * * SYNOPSIS: * * int df1, df2; * long double x, y, fdtrl(); * * y = fdtrl( df1, df2, x ); * * * * DESCRIPTION: * * Returns the area from zero to x under the F density * function (also known as Snedcor's density or the * variance ratio density). This is the density * of x = (u1/df1)/(u2/df2), where u1 and u2 are random * variables having Chi square distributions with df1 * and df2 degrees of freedom, respectively. * * The incomplete beta integral is used, according to the * formula * * P(x) = incbetl( df1/2, df2/2, (df1*x/(df2 + df1*x) ). * * * The arguments a and b are greater than zero, and x * x is nonnegative. * * ACCURACY: * * Tested at random points (a,b,x) in the indicated intervals. * x a,b Relative error: * arithmetic domain domain # trials peak rms * IEEE 0,1 1,100 10000 9.3e-18 2.9e-19 * IEEE 0,1 1,10000 10000 1.9e-14 2.9e-15 * IEEE 1,5 1,10000 10000 5.8e-15 1.4e-16 * * ERROR MESSAGES: * * message condition value returned * fdtrl domain a<0, b<0, x<0 0.0 * */ /* fdtrcl() * * Complemented F distribution * * * * SYNOPSIS: * * int df1, df2; * long double x, y, fdtrcl(); * * y = fdtrcl( df1, df2, x ); * * * * DESCRIPTION: * * Returns the area from x to infinity under the F density * function (also known as Snedcor's density or the * variance ratio density). * * * inf. * - * 1 | | a-1 b-1 * 1-P(x) = ------ | t (1-t) dt * B(a,b) | | * - * x * * (See fdtr.c.) * * The incomplete beta integral is used, according to the * formula * * P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ). * * * ACCURACY: * * See incbet.c. * Tested at random points (a,b,x). * * x a,b Relative error: * arithmetic domain domain # trials peak rms * IEEE 0,1 0,100 10000 4.2e-18 3.3e-19 * IEEE 0,1 1,10000 10000 7.2e-15 2.6e-16 * IEEE 1,5 1,10000 10000 1.7e-14 3.0e-15 * * ERROR MESSAGES: * * message condition value returned * fdtrcl domain a<0, b<0, x<0 0.0 * */ /* fdtril() * * Inverse of complemented F distribution * * * * SYNOPSIS: * * int df1, df2; * long double x, p, fdtril(); * * x = fdtril( df1, df2, p ); * * DESCRIPTION: * * Finds the F density argument x such that the integral * from x to infinity of the F density is equal to the * given probability p. * * This is accomplished using the inverse beta integral * function and the relations * * z = incbi( df2/2, df1/2, p ) * x = df2 (1-z) / (df1 z). * * Note: the following relations hold for the inverse of * the uncomplemented F distribution: * * z = incbi( df1/2, df2/2, p ) * x = df2 z / (df1 (1-z)). * * ACCURACY: * * See incbi.c. * Tested at random points (a,b,p). * * a,b Relative error: * arithmetic domain # trials peak rms * For p between .001 and 1: * IEEE 1,100 40000 4.6e-18 2.7e-19 * IEEE 1,10000 30000 1.7e-14 1.4e-16 * For p between 10^-6 and .001: * IEEE 1,100 20000 1.9e-15 3.9e-17 * IEEE 1,10000 30000 2.7e-15 4.0e-17 * * ERROR MESSAGES: * * message condition value returned * fdtril domain p <= 0 or p > 1 0.0 * v < 1 */ /* Cephes Math Library Release 2.3: March, 1995 Copyright 1984, 1995 by Stephen L. Moshier */ #include <math.h> #ifdef ANSIPROT extern long double incbetl ( long double, long double, long double ); extern long double incbil ( long double, long double, long double ); #else long double incbetl(), incbil(); #endif long double fdtrcl( ia, ib, x ) int ia, ib; long double x; { long double a, b, w; if( (ia < 1) || (ib < 1) || (x < 0.0L) ) { mtherr( "fdtrcl", DOMAIN ); return( 0.0L ); } a = ia; b = ib; w = b / (b + a * x); return( incbetl( 0.5L*b, 0.5L*a, w ) ); } long double fdtrl( ia, ib, x ) int ia, ib; long double x; { long double a, b, w; if( (ia < 1) || (ib < 1) || (x < 0.0L) ) { mtherr( "fdtrl", DOMAIN ); return( 0.0L ); } a = ia; b = ib; w = a * x; w = w / (b + w); return( incbetl(0.5L*a, 0.5L*b, w) ); } long double fdtril( ia, ib, y ) int ia, ib; long double y; { long double a, b, w, x; if( (ia < 1) || (ib < 1) || (y <= 0.0L) || (y > 1.0L) ) { mtherr( "fdtril", DOMAIN ); return( 0.0L ); } a = ia; b = ib; /* Compute probability for x = 0.5. */ w = incbetl( 0.5L*b, 0.5L*a, 0.5L ); /* If that is greater than y, then the solution w < .5. Otherwise, solve at 1-y to remove cancellation in (b - b*w). */ if( w > y || y < 0.001L) { w = incbil( 0.5L*b, 0.5L*a, y ); x = (b - b*w)/(a*w); } else { w = incbil( 0.5L*a, 0.5L*b, 1.0L - y ); x = b*w/(a*(1.0L-w)); } return(x); }