/* expl.c * * Exponential function, long double precision * * * * SYNOPSIS: * * long double x, y, expl(); * * y = expl( x ); * * * * DESCRIPTION: * * Returns e (2.71828...) raised to the x power. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that * * x k f * e = 2 e. * * A Pade' form of degree 2/3 is used to approximate exp(f) - 1 * in the basic range [-0.5 ln 2, 0.5 ln 2]. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE +-10000 50000 1.12e-19 2.81e-20 * * * Error amplification in the exponential function can be * a serious matter. The error propagation involves * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), * which shows that a 1 lsb error in representing X produces * a relative error of X times 1 lsb in the function. * While the routine gives an accurate result for arguments * that are exactly represented by a long double precision * computer number, the result contains amplified roundoff * error for large arguments not exactly represented. * * * ERROR MESSAGES: * * message condition value returned * exp underflow x < MINLOG 0.0 * exp overflow x > MAXLOG MAXNUM * */ /* Cephes Math Library Release 2.7: May, 1998 Copyright 1984, 1990, 1998 by Stephen L. Moshier */ /* Exponential function */ #include #ifdef UNK static long double P[3] = { 1.2617719307481059087798E-4L, 3.0299440770744196129956E-2L, 9.9999999999999999991025E-1L, }; static long double Q[4] = { 3.0019850513866445504159E-6L, 2.5244834034968410419224E-3L, 2.2726554820815502876593E-1L, 2.0000000000000000000897E0L, }; static long double C1 = 6.9314575195312500000000E-1L; static long double C2 = 1.4286068203094172321215E-6L; #endif #ifdef DEC not supported in long double precision #endif #ifdef IBMPC static short P[] = { 0x424e,0x225f,0x6eaf,0x844e,0x3ff2, XPD 0xf39e,0x5163,0x8866,0xf836,0x3ff9, XPD 0xfffe,0xffff,0xffff,0xffff,0x3ffe, XPD }; static short Q[] = { 0xff1e,0xb2fc,0xb5e1,0xc975,0x3fec, XPD 0xff3e,0x45b5,0xcda8,0xa571,0x3ff6, XPD 0x9ee1,0x3f03,0x4cc4,0xe8b8,0x3ffc, XPD 0x0000,0x0000,0x0000,0x8000,0x4000, XPD }; static short sc1[] = {0x0000,0x0000,0x0000,0xb172,0x3ffe, XPD}; #define C1 (*(long double *)sc1) static short sc2[] = {0x4f1e,0xcd5e,0x8e7b,0xbfbe,0x3feb, XPD}; #define C2 (*(long double *)sc2) #endif #ifdef MIEEE static long P[9] = { 0x3ff20000,0x844e6eaf,0x225f424e, 0x3ff90000,0xf8368866,0x5163f39e, 0x3ffe0000,0xffffffff,0xfffffffe, }; static long Q[12] = { 0x3fec0000,0xc975b5e1,0xb2fcff1e, 0x3ff60000,0xa571cda8,0x45b5ff3e, 0x3ffc0000,0xe8b84cc4,0x3f039ee1, 0x40000000,0x80000000,0x00000000, }; static long sc1[] = {0x3ffe0000,0xb1720000,0x00000000}; #define C1 (*(long double *)sc1) static long sc2[] = {0x3feb0000,0xbfbe8e7b,0xcd5e4f1e}; #define C2 (*(long double *)sc2) #endif extern long double LOG2EL, MAXLOGL, MINLOGL, MAXNUML; #ifdef ANSIPROT extern long double polevll ( long double, void *, int ); extern long double floorl ( long double ); extern long double ldexpl ( long double, int ); extern int isnanl ( long double ); #else long double polevll(), floorl(), ldexpl(), isnanl(); #endif #ifdef INFINITIES extern long double INFINITYL; #endif long double expl(x) long double x; { long double px, xx; int n; #ifdef NANS if( isnanl(x) ) return(x); #endif if( x > MAXLOGL) { #ifdef INFINITIES return( INFINITYL ); #else mtherr( "expl", OVERFLOW ); return( MAXNUML ); #endif } if( x < MINLOGL ) { #ifndef INFINITIES mtherr( "expl", UNDERFLOW ); #endif return(0.0L); } /* Express e**x = e**g 2**n * = e**g e**( n loge(2) ) * = e**( g + n loge(2) ) */ px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */ n = px; x -= px * C1; x -= px * C2; /* rational approximation for exponential * of the fractional part: * e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) */ xx = x * x; px = x * polevll( xx, P, 2 ); x = px/( polevll( xx, Q, 3 ) - px ); x = 1.0L + ldexpl( x, 1 ); x = ldexpl( x, n ); return(x); }