/* ellpkl.c * * Complete elliptic integral of the first kind * * * * SYNOPSIS: * * long double m1, y, ellpkl(); * * y = ellpkl( m1 ); * * * * DESCRIPTION: * * Approximates the integral * * * * pi/2 * - * | | * | dt * K(m) = | ------------------ * | 2 * | | sqrt( 1 - m sin t ) * - * 0 * * where m = 1 - m1, using the approximation * * P(x) - log x Q(x). * * The argument m1 is used rather than m so that the logarithmic * singularity at m = 1 will be shifted to the origin; this * preserves maximum accuracy. * * K(0) = pi/2. * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,1 10000 1.1e-19 3.3e-20 * * ERROR MESSAGES: * * message condition value returned * ellpkl domain x<0, x>1 0.0 * */ /* ellpkl.c */ /* Cephes Math Library, Release 2.3: October, 1995 Copyright 1984, 1987, 1995 by Stephen L. Moshier */ #include <math.h> #if UNK static long double P[13] = { 1.247539729154838838628E-6L, 2.149421654232011240659E-4L, 2.265267575136470585139E-3L, 6.723088676584254248821E-3L, 8.092066790639263075808E-3L, 5.664069509748147028621E-3L, 4.579865994050801042865E-3L, 5.797368411662027645234E-3L, 8.767698209432225911803E-3L, 1.493761594388688915057E-2L, 3.088514457872042326871E-2L, 9.657359027999314232753E-2L, 1.386294361119890618992E0L, }; static long double Q[12] = { 5.568631677757315398993E-5L, 1.036110372590318802997E-3L, 5.500459122138244213579E-3L, 1.337330436245904844528E-2L, 2.033103735656990487115E-2L, 2.522868345512332304268E-2L, 3.026786461242788135379E-2L, 3.738370118296930305919E-2L, 4.882812208418620146046E-2L, 7.031249999330222751046E-2L, 1.249999999999978263154E-1L, 4.999999999999999999924E-1L, }; static long double C1 = 1.386294361119890618834L; /* log(4) */ #endif #if IBMPC static short P[] = { 0xf098,0xad01,0x2381,0xa771,0x3feb, XPD 0xd6ed,0xea22,0x1922,0xe162,0x3ff2, XPD 0x3733,0xe2f1,0xe226,0x9474,0x3ff6, XPD 0x3031,0x3c9d,0x5aff,0xdc4d,0x3ff7, XPD 0x9a46,0x4310,0x968e,0x8494,0x3ff8, XPD 0xbe4c,0x3ff2,0xa8a7,0xb999,0x3ff7, XPD 0xf35c,0x0eaf,0xb355,0x9612,0x3ff7, XPD 0xbc56,0x8fd4,0xd9dd,0xbdf7,0x3ff7, XPD 0xc01e,0x867f,0x6444,0x8fa6,0x3ff8, XPD 0x4ba3,0x6392,0xe6fd,0xf4bc,0x3ff8, XPD 0x62c3,0xbb12,0xd7bc,0xfd02,0x3ff9, XPD 0x08fe,0x476c,0x5fdf,0xc5c8,0x3ffb, XPD 0x79ad,0xd1cf,0x17f7,0xb172,0x3fff, XPD }; static short Q[] = { 0x96a4,0x8474,0xba33,0xe990,0x3ff0, XPD 0xe5a7,0xa50e,0x1854,0x87ce,0x3ff5, XPD 0x8999,0x72e3,0x3205,0xb43d,0x3ff7, XPD 0x3255,0x13eb,0xb438,0xdb1b,0x3ff8, XPD 0xb717,0x497f,0x4691,0xa68d,0x3ff9, XPD 0x30be,0x8c6b,0x624b,0xceac,0x3ff9, XPD 0xa858,0x2a0d,0x5014,0xf7f4,0x3ff9, XPD 0x8615,0xbfa6,0xa6df,0x991f,0x3ffa, XPD 0x103c,0xa076,0xff37,0xc7ff,0x3ffa, XPD 0xf508,0xc515,0xffff,0x8fff,0x3ffb, XPD 0x1af5,0xfffb,0xffff,0xffff,0x3ffb, XPD 0x0000,0x0000,0x0000,0x8000,0x3ffe, XPD }; static unsigned short ac1[] = { 0x79ac,0xd1cf,0x17f7,0xb172,0x3fff, XPD }; #define C1 (*(long double *)ac1) #endif #ifdef MIEEE static long P[39] = { 0x3feb0000,0xa7712381,0xad01f098, 0x3ff20000,0xe1621922,0xea22d6ed, 0x3ff60000,0x9474e226,0xe2f13733, 0x3ff70000,0xdc4d5aff,0x3c9d3031, 0x3ff80000,0x8494968e,0x43109a46, 0x3ff70000,0xb999a8a7,0x3ff2be4c, 0x3ff70000,0x9612b355,0x0eaff35c, 0x3ff70000,0xbdf7d9dd,0x8fd4bc56, 0x3ff80000,0x8fa66444,0x867fc01e, 0x3ff80000,0xf4bce6fd,0x63924ba3, 0x3ff90000,0xfd02d7bc,0xbb1262c3, 0x3ffb0000,0xc5c85fdf,0x476c08fe, 0x3fff0000,0xb17217f7,0xd1cf79ad, }; static long Q[36] = { 0x3ff00000,0xe990ba33,0x847496a4, 0x3ff50000,0x87ce1854,0xa50ee5a7, 0x3ff70000,0xb43d3205,0x72e38999, 0x3ff80000,0xdb1bb438,0x13eb3255, 0x3ff90000,0xa68d4691,0x497fb717, 0x3ff90000,0xceac624b,0x8c6b30be, 0x3ff90000,0xf7f45014,0x2a0da858, 0x3ffa0000,0x991fa6df,0xbfa68615, 0x3ffa0000,0xc7ffff37,0xa076103c, 0x3ffb0000,0x8fffffff,0xc515f508, 0x3ffb0000,0xffffffff,0xfffb1af5, 0x3ffe0000,0x80000000,0x00000000, }; static unsigned long ac1[] = { 0x3fff0000,0xb17217f7,0xd1cf79ac }; #define C1 (*(long double *)ac1) #endif #ifdef ANSIPROT extern long double polevll ( long double, void *, int ); extern long double logl ( long double ); #else long double polevll(), logl(); #endif extern long double MACHEPL, MAXNUML; long double ellpkl(x) long double x; { if( (x < 0.0L) || (x > 1.0L) ) { mtherr( "ellpkl", DOMAIN ); return( 0.0L ); } if( x > MACHEPL ) { return( polevll(x,P,12) - logl(x) * polevll(x,Q,11) ); } else { if( x == 0.0L ) { mtherr( "ellpkl", SING ); return( MAXNUML ); } else { return( C1 - 0.5L * logl(x) ); } } }