/* ellpjl.c * * Jacobian Elliptic Functions * * * * SYNOPSIS: * * long double u, m, sn, cn, dn, phi; * int ellpjl(); * * ellpjl( u, m, _&sn, _&cn, _&dn, _&phi ); * * * * DESCRIPTION: * * * Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m), * and dn(u|m) of parameter m between 0 and 1, and real * argument u. * * These functions are periodic, with quarter-period on the * real axis equal to the complete elliptic integral * ellpk(1.0-m). * * Relation to incomplete elliptic integral: * If u = ellik(phi,m), then sn(u|m) = sin(phi), * and cn(u|m) = cos(phi). Phi is called the amplitude of u. * * Computation is by means of the arithmetic-geometric mean * algorithm, except when m is within 1e-12 of 0 or 1. In the * latter case with m close to 1, the approximation applies * only for phi < pi/2. * * ACCURACY: * * Tested at random points with u between 0 and 10, m between * 0 and 1. * * Absolute error (* = relative error): * arithmetic function # trials peak rms * IEEE sn 10000 1.7e-18 2.3e-19 * IEEE cn 20000 1.6e-18 2.2e-19 * IEEE dn 10000 4.7e-15 2.7e-17 * IEEE phi 10000 4.0e-19* 6.6e-20* * * Accuracy deteriorates when u is large. * */ /* Cephes Math Library Release 2.3: November, 1995 Copyright 1984, 1987, 1995 by Stephen L. Moshier */ #include <math.h> #ifdef ANSIPROT extern long double sqrtl ( long double ); extern long double fabsl ( long double ); extern long double sinl ( long double ); extern long double cosl ( long double ); extern long double asinl ( long double ); extern long double tanhl ( long double ); extern long double sinhl ( long double ); extern long double coshl ( long double ); extern long double atanl ( long double ); extern long double expl ( long double ); #else long double sqrtl(), fabsl(), sinl(), cosl(), asinl(), tanhl(); long double sinhl(), coshl(), atanl(), expl(); #endif extern long double PIO2L, MACHEPL; int ellpjl( u, m, sn, cn, dn, ph ) long double u, m; long double *sn, *cn, *dn, *ph; { long double ai, b, phi, t, twon; long double a[9], c[9]; int i; /* Check for special cases */ if( m < 0.0L || m > 1.0L ) { mtherr( "ellpjl", DOMAIN ); *sn = 0.0L; *cn = 0.0L; *ph = 0.0L; *dn = 0.0L; return(-1); } if( m < 1.0e-12L ) { t = sinl(u); b = cosl(u); ai = 0.25L * m * (u - t*b); *sn = t - ai*b; *cn = b + ai*t; *ph = u - ai; *dn = 1.0L - 0.5L*m*t*t; return(0); } if( m >= 0.999999999999L ) { ai = 0.25L * (1.0L-m); b = coshl(u); t = tanhl(u); phi = 1.0L/b; twon = b * sinhl(u); *sn = t + ai * (twon - u)/(b*b); *ph = 2.0L*atanl(expl(u)) - PIO2L + ai*(twon - u)/b; ai *= t * phi; *cn = phi - ai * (twon - u); *dn = phi + ai * (twon + u); return(0); } /* A. G. M. scale */ a[0] = 1.0L; b = sqrtl(1.0L - m); c[0] = sqrtl(m); twon = 1.0L; i = 0; while( fabsl(c[i]/a[i]) > MACHEPL ) { if( i > 7 ) { mtherr( "ellpjl", OVERFLOW ); goto done; } ai = a[i]; ++i; c[i] = 0.5L * ( ai - b ); t = sqrtl( ai * b ); a[i] = 0.5L * ( ai + b ); b = t; twon *= 2.0L; } done: /* backward recurrence */ phi = twon * a[i] * u; do { t = c[i] * sinl(phi) / a[i]; b = phi; phi = 0.5L * (asinl(t) + phi); } while( --i ); *sn = sinl(phi); t = cosl(phi); *cn = t; *dn = t/cosl(phi-b); *ph = phi; return(0); }