/* ellikl.c * * Incomplete elliptic integral of the first kind * * * * SYNOPSIS: * * long double phi, m, y, ellikl(); * * y = ellikl( phi, m ); * * * * DESCRIPTION: * * Approximates the integral * * * * phi * - * | | * | dt * F(phi_\m) = | ------------------ * | 2 * | | sqrt( 1 - m sin t ) * - * 0 * * of amplitude phi and modulus m, using the arithmetic - * geometric mean algorithm. * * * * * ACCURACY: * * Tested at random points with m in [0, 1] and phi as indicated. * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,10 30000 3.6e-18 4.1e-19 * * */ /* Cephes Math Library Release 2.3: November, 1995 Copyright 1984, 1987, 1995 by Stephen L. Moshier */ /* Incomplete elliptic integral of first kind */ #include <math.h> #ifdef ANSIPROT extern long double sqrtl ( long double ); extern long double fabsl ( long double ); extern long double logl ( long double ); extern long double tanl ( long double ); extern long double atanl ( long double ); extern long double floorl ( long double ); extern long double ellpkl ( long double ); long double ellikl ( long double, long double ); #else long double sqrtl(), fabsl(), logl(), tanl(), atanl(), floorl(), ellpkl(); long double ellikl(); #endif extern long double PIL, PIO2L, MACHEPL, MAXNUML; long double ellikl( phi, m ) long double phi, m; { long double a, b, c, e, temp, t, K; int d, mod, sign, npio2; if( m == 0.0L ) return( phi ); a = 1.0L - m; if( a == 0.0L ) { if( fabsl(phi) >= PIO2L ) { mtherr( "ellikl", SING ); return( MAXNUML ); } return( logl( tanl( 0.5L*(PIO2L + phi) ) ) ); } npio2 = floorl( phi/PIO2L ); if( npio2 & 1 ) npio2 += 1; if( npio2 ) { K = ellpkl( a ); phi = phi - npio2 * PIO2L; } else K = 0.0L; if( phi < 0.0L ) { phi = -phi; sign = -1; } else sign = 0; b = sqrtl(a); t = tanl( phi ); if( fabsl(t) > 10.0L ) { /* Transform the amplitude */ e = 1.0L/(b*t); /* ... but avoid multiple recursions. */ if( fabsl(e) < 10.0L ) { e = atanl(e); if( npio2 == 0 ) K = ellpkl( a ); temp = K - ellikl( e, m ); goto done; } } a = 1.0L; c = sqrtl(m); d = 1; mod = 0; while( fabsl(c/a) > MACHEPL ) { temp = b/a; phi = phi + atanl(t*temp) + mod * PIL; mod = (phi + PIO2L)/PIL; t = t * ( 1.0L + temp )/( 1.0L - temp * t * t ); c = 0.5L * ( a - b ); temp = sqrtl( a * b ); a = 0.5L * ( a + b ); b = temp; d += d; } temp = (atanl(t) + mod * PIL)/(d * a); done: if( sign < 0 ) temp = -temp; temp += npio2 * K; return( temp ); }