/* clogl.c * * Complex natural logarithm * * * * SYNOPSIS: * * void clogl(); * cmplxl z, w; * * clogl( &z, &w ); * * * * DESCRIPTION: * * Returns complex logarithm to the base e (2.718...) of * the complex argument x. * * If z = x + iy, r = sqrt( x**2 + y**2 ), * then * w = log(r) + i arctan(y/x). * * The arctangent ranges from -PI to +PI. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 7000 8.5e-17 1.9e-17 * IEEE -10,+10 30000 5.0e-15 1.1e-16 * * Larger relative error can be observed for z near 1 +i0. * In IEEE arithmetic the peak absolute error is 5.2e-16, rms * absolute error 1.0e-16. */ #include <math.h> #ifdef ANSIPROT static void cchshl ( long double x, long double *c, long double *s ); static long double redupil ( long double x ); static long double ctansl ( cmplxl *z ); long double cabsl ( cmplxl *x ); void csqrtl ( cmplxl *x, cmplxl *y ); void caddl ( cmplxl *x, cmplxl *y, cmplxl *z ); extern long double fabsl ( long double ); extern long double sqrtl ( long double ); extern long double logl ( long double ); extern long double expl ( long double ); extern long double atan2l ( long double, long double ); extern long double coshl ( long double ); extern long double sinhl ( long double ); extern long double asinl ( long double ); extern long double sinl ( long double ); extern long double cosl ( long double ); void clogl ( cmplxl *, cmplxl *); void casinl ( cmplxl *, cmplxl *); #else static void cchshl(); static long double redupil(); static long double ctansl(); long double cabsl(), fabsl(), sqrtl(); lnog double logl(), expl(), atan2l(), coshl(), sinhl(); long double asinl(), sinl(), cosl(); void caddl(), csqrtl(), clogl(), casinl(); #endif extern long double MAXNUML, MACHEPL, PIL, PIO2L; void clogl( z, w ) register cmplxl *z, *w; { long double p, rr; /*rr = sqrt( z->r * z->r + z->i * z->i );*/ rr = cabsl(z); p = logl(rr); #if ANSIC rr = atan2l( z->i, z->r ); #else rr = atan2l( z->r, z->i ); if( rr > PIL ) rr -= PIL + PIL; #endif w->i = rr; w->r = p; } /* cexpl() * * Complex exponential function * * * * SYNOPSIS: * * void cexpl(); * cmplxl z, w; * * cexpl( &z, &w ); * * * * DESCRIPTION: * * Returns the exponential of the complex argument z * into the complex result w. * * If * z = x + iy, * r = exp(x), * * then * * w = r cos y + i r sin y. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 8700 3.7e-17 1.1e-17 * IEEE -10,+10 30000 3.0e-16 8.7e-17 * */ void cexpl( z, w ) register cmplxl *z, *w; { long double r; r = expl( z->r ); w->r = r * cosl( z->i ); w->i = r * sinl( z->i ); } /* csinl() * * Complex circular sine * * * * SYNOPSIS: * * void csinl(); * cmplxl z, w; * * csinl( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * w = sin x cosh y + i cos x sinh y. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 8400 5.3e-17 1.3e-17 * IEEE -10,+10 30000 3.8e-16 1.0e-16 * Also tested by csin(casin(z)) = z. * */ void csinl( z, w ) register cmplxl *z, *w; { long double ch, sh; cchshl( z->i, &ch, &sh ); w->r = sinl( z->r ) * ch; w->i = cosl( z->r ) * sh; } /* calculate cosh and sinh */ static void cchshl( x, c, s ) long double x, *c, *s; { long double e, ei; if( fabsl(x) <= 0.5L ) { *c = coshl(x); *s = sinhl(x); } else { e = expl(x); ei = 0.5L/e; e = 0.5L * e; *s = e - ei; *c = e + ei; } } /* ccosl() * * Complex circular cosine * * * * SYNOPSIS: * * void ccosl(); * cmplxl z, w; * * ccosl( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * w = cos x cosh y - i sin x sinh y. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 8400 4.5e-17 1.3e-17 * IEEE -10,+10 30000 3.8e-16 1.0e-16 */ void ccosl( z, w ) register cmplxl *z, *w; { long double ch, sh; cchshl( z->i, &ch, &sh ); w->r = cosl( z->r ) * ch; w->i = -sinl( z->r ) * sh; } /* ctanl() * * Complex circular tangent * * * * SYNOPSIS: * * void ctanl(); * cmplxl z, w; * * ctanl( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * sin 2x + i sinh 2y * w = --------------------. * cos 2x + cosh 2y * * On the real axis the denominator is zero at odd multiples * of PI/2. The denominator is evaluated by its Taylor * series near these points. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 5200 7.1e-17 1.6e-17 * IEEE -10,+10 30000 7.2e-16 1.2e-16 * Also tested by ctan * ccot = 1 and catan(ctan(z)) = z. */ void ctanl( z, w ) register cmplxl *z, *w; { long double d; d = cosl( 2.0L * z->r ) + coshl( 2.0L * z->i ); if( fabsl(d) < 0.25L ) d = ctansl(z); if( d == 0.0L ) { mtherr( "ctan", OVERFLOW ); w->r = MAXNUML; w->i = MAXNUML; return; } w->r = sinl( 2.0L * z->r ) / d; w->i = sinhl( 2.0L * z->i ) / d; } /* ccotl() * * Complex circular cotangent * * * * SYNOPSIS: * * void ccotl(); * cmplxl z, w; * * ccotl( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * sin 2x - i sinh 2y * w = --------------------. * cosh 2y - cos 2x * * On the real axis, the denominator has zeros at even * multiples of PI/2. Near these points it is evaluated * by a Taylor series. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 3000 6.5e-17 1.6e-17 * IEEE -10,+10 30000 9.2e-16 1.2e-16 * Also tested by ctan * ccot = 1 + i0. */ void ccotl( z, w ) register cmplxl *z, *w; { long double d; d = coshl(2.0L * z->i) - cosl(2.0L * z->r); if( fabsl(d) < 0.25L ) d = ctansl(z); if( d == 0.0L ) { mtherr( "ccot", OVERFLOW ); w->r = MAXNUML; w->i = MAXNUML; return; } w->r = sinl( 2.0L * z->r ) / d; w->i = -sinhl( 2.0L * z->i ) / d; } /* Program to subtract nearest integer multiple of PI */ /* extended precision value of PI: */ #ifdef UNK static double DP1 = 3.14159265160560607910E0; static double DP2 = 1.98418714791870343106E-9; static double DP3 = 1.14423774522196636802E-17; #endif #ifdef DEC static unsigned short P1[] = {0040511,0007732,0120000,0000000,}; static unsigned short P2[] = {0031010,0055060,0100000,0000000,}; static unsigned short P3[] = {0022123,0011431,0105056,0001560,}; #define DP1 *(double *)P1 #define DP2 *(double *)P2 #define DP3 *(double *)P3 #endif #ifdef IBMPC static unsigned short P1[] = {0x0000,0x5400,0x21fb,0x4009}; static unsigned short P2[] = {0x0000,0x1000,0x0b46,0x3e21}; static unsigned short P3[] = {0xc06e,0x3145,0x6263,0x3c6a}; #define DP1 *(double *)P1 #define DP2 *(double *)P2 #define DP3 *(double *)P3 #endif #ifdef MIEEE static unsigned short P1[] = { 0x4009,0x21fb,0x5400,0x0000 }; static unsigned short P2[] = { 0x3e21,0x0b46,0x1000,0x0000 }; static unsigned short P3[] = { 0x3c6a,0x6263,0x3145,0xc06e }; #define DP1 *(double *)P1 #define DP2 *(double *)P2 #define DP3 *(double *)P3 #endif static long double redupil(x) long double x; { long double t; long i; t = x/PIL; if( t >= 0.0L ) t += 0.5L; else t -= 0.5L; i = t; /* the multiple */ t = i; t = ((x - t * DP1) - t * DP2) - t * DP3; return(t); } /* Taylor series expansion for cosh(2y) - cos(2x) */ static long double ctansl(z) cmplxl *z; { long double f, x, x2, y, y2, rn, t; long double d; x = fabsl( 2.0L * z->r ); y = fabsl( 2.0L * z->i ); x = redupil(x); x = x * x; y = y * y; x2 = 1.0L; y2 = 1.0L; f = 1.0L; rn = 0.0; d = 0.0; do { rn += 1.0L; f *= rn; rn += 1.0L; f *= rn; x2 *= x; y2 *= y; t = y2 + x2; t /= f; d += t; rn += 1.0L; f *= rn; rn += 1.0L; f *= rn; x2 *= x; y2 *= y; t = y2 - x2; t /= f; d += t; } while( fabsl(t/d) > MACHEPL ); return(d); } /* casinl() * * Complex circular arc sine * * * * SYNOPSIS: * * void casinl(); * cmplxl z, w; * * casinl( &z, &w ); * * * * DESCRIPTION: * * Inverse complex sine: * * 2 * w = -i clog( iz + csqrt( 1 - z ) ). * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 10100 2.1e-15 3.4e-16 * IEEE -10,+10 30000 2.2e-14 2.7e-15 * Larger relative error can be observed for z near zero. * Also tested by csin(casin(z)) = z. */ void casinl( z, w ) cmplxl *z, *w; { static cmplxl ca, ct, zz, z2; long double x, y; x = z->r; y = z->i; if( y == 0.0L ) { if( fabsl(x) > 1.0L ) { w->r = PIO2L; w->i = 0.0L; mtherr( "casinl", DOMAIN ); } else { w->r = asinl(x); w->i = 0.0L; } return; } /* Power series expansion */ /* b = cabsl(z); if( b < 0.125L ) { z2.r = (x - y) * (x + y); z2.i = 2.0L * x * y; cn = 1.0L; n = 1.0L; ca.r = x; ca.i = y; sum.r = x; sum.i = y; do { ct.r = z2.r * ca.r - z2.i * ca.i; ct.i = z2.r * ca.i + z2.i * ca.r; ca.r = ct.r; ca.i = ct.i; cn *= n; n += 1.0L; cn /= n; n += 1.0L; b = cn/n; ct.r *= b; ct.i *= b; sum.r += ct.r; sum.i += ct.i; b = fabsl(ct.r) + fabs(ct.i); } while( b > MACHEPL ); w->r = sum.r; w->i = sum.i; return; } */ ca.r = x; ca.i = y; ct.r = -ca.i; /* iz */ ct.i = ca.r; /* sqrt( 1 - z*z) */ /* cmul( &ca, &ca, &zz ) */ zz.r = (ca.r - ca.i) * (ca.r + ca.i); /*x * x - y * y */ zz.i = 2.0L * ca.r * ca.i; zz.r = 1.0L - zz.r; zz.i = -zz.i; csqrtl( &zz, &z2 ); caddl( &z2, &ct, &zz ); clogl( &zz, &zz ); w->r = zz.i; /* mult by 1/i = -i */ w->i = -zz.r; return; } /* cacosl() * * Complex circular arc cosine * * * * SYNOPSIS: * * void cacosl(); * cmplxl z, w; * * cacosl( &z, &w ); * * * * DESCRIPTION: * * * w = arccos z = PI/2 - arcsin z. * * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 5200 1.6e-15 2.8e-16 * IEEE -10,+10 30000 1.8e-14 2.2e-15 */ void cacosl( z, w ) cmplxl *z, *w; { casinl( z, w ); w->r = PIO2L - w->r; w->i = -w->i; } /* catanl() * * Complex circular arc tangent * * * * SYNOPSIS: * * void catanl(); * cmplxl z, w; * * catanl( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * 1 ( 2x ) * Re w = - arctan(-----------) + k PI * 2 ( 2 2) * (1 - x - y ) * * ( 2 2) * 1 (x + (y+1) ) * Im w = - log(------------) * 4 ( 2 2) * (x + (y-1) ) * * Where k is an arbitrary integer. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 5900 1.3e-16 7.8e-18 * IEEE -10,+10 30000 2.3e-15 8.5e-17 * The check catan( ctan(z) ) = z, with |x| and |y| < PI/2, * had peak relative error 1.5e-16, rms relative error * 2.9e-17. See also clog(). */ void catanl( z, w ) cmplxl *z, *w; { long double a, t, x, x2, y; x = z->r; y = z->i; if( (x == 0.0L) && (y > 1.0L) ) goto ovrf; x2 = x * x; a = 1.0L - x2 - (y * y); if( a == 0.0L ) goto ovrf; #if ANSIC t = atan2l( 2.0L * x, a ) * 0.5L; #else t = atan2l( a, 2.0 * x ) * 0.5L; #endif w->r = redupil( t ); t = y - 1.0L; a = x2 + (t * t); if( a == 0.0L ) goto ovrf; t = y + 1.0L; a = (x2 + (t * t))/a; w->i = logl(a)/4.0; return; ovrf: mtherr( "catanl", OVERFLOW ); w->r = MAXNUML; w->i = MAXNUML; }