/* zetaf.c * * Riemann zeta function of two arguments * * * * SYNOPSIS: * * float x, q, y, zetaf(); * * y = zetaf( x, q ); * * * * DESCRIPTION: * * * * inf. * - -x * zeta(x,q) = > (k+q) * - * k=0 * * where x > 1 and q is not a negative integer or zero. * The Euler-Maclaurin summation formula is used to obtain * the expansion * * n * - -x * zeta(x,q) = > (k+q) * - * k=1 * * 1-x inf. B x(x+1)...(x+2j) * (n+q) 1 - 2j * + --------- - ------- + > -------------------- * x-1 x - x+2j+1 * 2(n+q) j=1 (2j)! (n+q) * * where the B2j are Bernoulli numbers. Note that (see zetac.c) * zeta(x,1) = zetac(x) + 1. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,25 10000 6.9e-7 1.0e-7 * * Large arguments may produce underflow in powf(), in which * case the results are inaccurate. * * REFERENCE: * * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals, * Series, and Products, p. 1073; Academic Press, 1980. * */ /* Cephes Math Library Release 2.2: July, 1992 Copyright 1984, 1987, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include <math.h> extern float MAXNUMF, MACHEPF; /* Expansion coefficients * for Euler-Maclaurin summation formula * (2k)! / B2k * where B2k are Bernoulli numbers */ static float A[] = { 12.0, -720.0, 30240.0, -1209600.0, 47900160.0, -1.8924375803183791606e9, /*1.307674368e12/691*/ 7.47242496e10, -2.950130727918164224e12, /*1.067062284288e16/3617*/ 1.1646782814350067249e14, /*5.109094217170944e18/43867*/ -4.5979787224074726105e15, /*8.028576626982912e20/174611*/ 1.8152105401943546773e17, /*1.5511210043330985984e23/854513*/ -7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091*/ }; /* 30 Nov 86 -- error in third coefficient fixed */ #define fabsf(x) ( (x) < 0 ? -(x) : (x) ) float powf( float, float ); float zetaf(float xx, float qq) { int i; float x, q, a, b, k, s, w, t; x = xx; q = qq; if( x == 1.0 ) return( MAXNUMF ); if( x < 1.0 ) { mtherr( "zetaf", DOMAIN ); return(0.0); } /* Euler-Maclaurin summation formula */ /* if( x < 25.0 ) { */ w = 9.0; s = powf( q, -x ); a = q; for( i=0; i<9; i++ ) { a += 1.0; b = powf( a, -x ); s += b; if( b/s < MACHEPF ) goto done; } w = a; s += b*w/(x-1.0); s -= 0.5 * b; a = 1.0; k = 0.0; for( i=0; i<12; i++ ) { a *= x + k; b /= w; t = a*b/A[i]; s = s + t; t = fabsf(t/s); if( t < MACHEPF ) goto done; k += 1.0; a *= x + k; b /= w; k += 1.0; } done: return(s); /* } */ /* Basic sum of inverse powers */ /* pseres: s = powf( q, -x ); a = q; do { a += 2.0; b = powf( a, -x ); s += b; } while( b/s > MACHEPF ); b = powf( 2.0, -x ); s = (s + b)/(1.0-b); return(s); */ }