/* ynf.c * * Bessel function of second kind of integer order * * * * SYNOPSIS: * * float x, y, ynf(); * int n; * * y = ynf( n, x ); * * * * DESCRIPTION: * * Returns Bessel function of order n, where n is a * (possibly negative) integer. * * The function is evaluated by forward recurrence on * n, starting with values computed by the routines * y0() and y1(). * * If n = 0 or 1 the routine for y0 or y1 is called * directly. * * * * ACCURACY: * * * Absolute error, except relative when y > 1: * * arithmetic domain # trials peak rms * IEEE 0, 30 10000 2.3e-6 3.4e-7 * * * ERROR MESSAGES: * * message condition value returned * yn singularity x = 0 MAXNUMF * yn overflow MAXNUMF * * Spot checked against tables for x, n between 0 and 100. * */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1984, 1987, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include <math.h> extern float MAXNUMF, MAXLOGF; float y0f(float), y1f(float), logf(float); float ynf( int nn, float xx ) { float x, an, anm1, anm2, r, xinv; int k, n, sign; x = xx; n = nn; if( n < 0 ) { n = -n; if( (n & 1) == 0 ) /* -1**n */ sign = 1; else sign = -1; } else sign = 1; if( n == 0 ) return( sign * y0f(x) ); if( n == 1 ) return( sign * y1f(x) ); /* test for overflow */ if( x <= 0.0 ) { mtherr( "ynf", SING ); return( -MAXNUMF ); } if( (x < 1.0) || (n > 29) ) { an = (float )n; r = an * logf( an/x ); if( r > MAXLOGF ) { mtherr( "ynf", OVERFLOW ); return( -MAXNUMF ); } } /* forward recurrence on n */ anm2 = y0f(x); anm1 = y1f(x); k = 1; r = 2 * k; xinv = 1.0/x; do { an = r * anm1 * xinv - anm2; anm2 = anm1; anm1 = an; r += 2.0; ++k; } while( k < n ); return( sign * an ); }