/* struvef.c * * Struve function * * * * SYNOPSIS: * * float v, x, y, struvef(); * * y = struvef( v, x ); * * * * DESCRIPTION: * * Computes the Struve function Hv(x) of order v, argument x. * Negative x is rejected unless v is an integer. * * This module also contains the hypergeometric functions 1F2 * and 3F0 and a routine for the Bessel function Yv(x) with * noninteger v. * * * * ACCURACY: * * v varies from 0 to 10. * Absolute error (relative error when |Hv(x)| > 1): * arithmetic domain # trials peak rms * IEEE -10,10 100000 9.0e-5 4.0e-6 * */ /* Cephes Math Library Release 2.2: July, 1992 Copyright 1984, 1987, 1989 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include <math.h> #define DEBUG 0 extern float MACHEPF, MAXNUMF, PIF; #define fabsf(x) ( (x) < 0 ? -(x) : (x) ) #ifdef ANSIC float gammaf(float), powf(float, float), sqrtf(float); float yvf(float, float); float floorf(float), ynf(int, float); float jvf(float, float); float sinf(float), cosf(float); #else float gammaf(), powf(), sqrtf(), yvf(); float floorf(), ynf(), jvf(), sinf(), cosf(); #endif float onef2f( float aa, float bb, float cc, float xx, float *err ) { float a, b, c, x, n, a0, sum, t; float an, bn, cn, max, z; a = aa; b = bb; c = cc; x = xx; an = a; bn = b; cn = c; a0 = 1.0; sum = 1.0; n = 1.0; t = 1.0; max = 0.0; do { if( an == 0 ) goto done; if( bn == 0 ) goto error; if( cn == 0 ) goto error; if( (a0 > 1.0e34) || (n > 200) ) goto error; a0 *= (an * x) / (bn * cn * n); sum += a0; an += 1.0; bn += 1.0; cn += 1.0; n += 1.0; z = fabsf( a0 ); if( z > max ) max = z; if( sum != 0 ) t = fabsf( a0 / sum ); else t = z; } while( t > MACHEPF ); done: *err = fabsf( MACHEPF*max /sum ); #if DEBUG printf(" onef2f cancellation error %.5E\n", *err ); #endif goto xit; error: #if DEBUG printf("onef2f does not converge\n"); #endif *err = MAXNUMF; xit: #if DEBUG printf("onef2( %.2E %.2E %.2E %.5E ) = %.3E %.6E\n", a, b, c, x, n, sum); #endif return(sum); } float threef0f( float aa, float bb, float cc, float xx, float *err ) { float a, b, c, x, n, a0, sum, t, conv, conv1; float an, bn, cn, max, z; a = aa; b = bb; c = cc; x = xx; an = a; bn = b; cn = c; a0 = 1.0; sum = 1.0; n = 1.0; t = 1.0; max = 0.0; conv = 1.0e38; conv1 = conv; do { if( an == 0.0 ) goto done; if( bn == 0.0 ) goto done; if( cn == 0.0 ) goto done; if( (a0 > 1.0e34) || (n > 200) ) goto error; a0 *= (an * bn * cn * x) / n; an += 1.0; bn += 1.0; cn += 1.0; n += 1.0; z = fabsf( a0 ); if( z > max ) max = z; if( z >= conv ) { if( (z < max) && (z > conv1) ) goto done; } conv1 = conv; conv = z; sum += a0; if( sum != 0 ) t = fabsf( a0 / sum ); else t = z; } while( t > MACHEPF ); done: t = fabsf( MACHEPF*max/sum ); #if DEBUG printf(" threef0f cancellation error %.5E\n", t ); #endif max = fabsf( conv/sum ); if( max > t ) t = max; #if DEBUG printf(" threef0f convergence %.5E\n", max ); #endif goto xit; error: #if DEBUG printf("threef0f does not converge\n"); #endif t = MAXNUMF; xit: #if DEBUG printf("threef0f( %.2E %.2E %.2E %.5E ) = %.3E %.6E\n", a, b, c, x, n, sum); #endif *err = t; return(sum); } float struvef( float vv, float xx ) { float v, x, y, ya, f, g, h, t; float onef2err, threef0err; v = vv; x = xx; f = floorf(v); if( (v < 0) && ( v-f == 0.5 ) ) { y = jvf( -v, x ); f = 1.0 - f; g = 2.0 * floorf(0.5*f); if( g != f ) y = -y; return(y); } t = 0.25*x*x; f = fabsf(x); g = 1.5 * fabsf(v); if( (f > 30.0) && (f > g) ) { onef2err = MAXNUMF; y = 0.0; } else { y = onef2f( 1.0, 1.5, 1.5+v, -t, &onef2err ); } if( (f < 18.0) || (x < 0.0) ) { threef0err = MAXNUMF; ya = 0.0; } else { ya = threef0f( 1.0, 0.5, 0.5-v, -1.0/t, &threef0err ); } f = sqrtf( PIF ); h = powf( 0.5*x, v-1.0 ); if( onef2err <= threef0err ) { g = gammaf( v + 1.5 ); y = y * h * t / ( 0.5 * f * g ); return(y); } else { g = gammaf( v + 0.5 ); ya = ya * h / ( f * g ); ya = ya + yvf( v, x ); return(ya); } } /* Bessel function of noninteger order */ float yvf( float vv, float xx ) { float v, x, y, t; int n; v = vv; x = xx; y = floorf( v ); if( y == v ) { n = v; y = ynf( n, x ); return( y ); } t = PIF * v; y = (cosf(t) * jvf( v, x ) - jvf( -v, x ))/sinf(t); return( y ); } /* Crossover points between ascending series and asymptotic series * for Struve function * * v x * * 0 19.2 * 1 18.95 * 2 19.15 * 3 19.3 * 5 19.7 * 10 21.35 * 20 26.35 * 30 32.31 * 40 40.0 */