/* sindgf.c * * Circular sine of angle in degrees * * * * SYNOPSIS: * * float x, y, sindgf(); * * y = sindgf( x ); * * * * DESCRIPTION: * * Range reduction is into intervals of 45 degrees. * * Two polynomial approximating functions are employed. * Between 0 and pi/4 the sine is approximated by * x + x**3 P(x**2). * Between pi/4 and pi/2 the cosine is represented as * 1 - x**2 Q(x**2). * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE +-3600 100,000 1.2e-7 3.0e-8 * * ERROR MESSAGES: * * message condition value returned * sin total loss x > 2^24 0.0 * */ /* cosdgf.c * * Circular cosine of angle in degrees * * * * SYNOPSIS: * * float x, y, cosdgf(); * * y = cosdgf( x ); * * * * DESCRIPTION: * * Range reduction is into intervals of 45 degrees. * * Two polynomial approximating functions are employed. * Between 0 and pi/4 the cosine is approximated by * 1 - x**2 Q(x**2). * Between pi/4 and pi/2 the sine is represented as * x + x**3 P(x**2). * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8 */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1985, 1987, 1988, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ /* Single precision circular sine * test interval: [-pi/4, +pi/4] * trials: 10000 * peak relative error: 6.8e-8 * rms relative error: 2.6e-8 */ #include <math.h> /*static float FOPI = 1.27323954473516;*/ extern float PIO4F; /* These are for a 24-bit significand: */ static float T24M1 = 16777215.; static float PI180 = 0.0174532925199432957692; /* pi/180 */ float sindgf( float xx ) { float x, y, z; long j; int sign; sign = 1; x = xx; if( xx < 0 ) { sign = -1; x = -xx; } if( x > T24M1 ) { mtherr( "sindgf", TLOSS ); return(0.0); } j = 0.022222222222222222222 * x; /* integer part of x/45 */ y = j; /* map zeros to origin */ if( j & 1 ) { j += 1; y += 1.0; } j &= 7; /* octant modulo 360 degrees */ /* reflect in x axis */ if( j > 3) { sign = -sign; j -= 4; } x = x - y * 45.0; x *= PI180; /* multiply by pi/180 to convert to radians */ z = x * x; if( (j==1) || (j==2) ) { /* y = ((( 2.4462803166E-5 * z - 1.3887580023E-3) * z + 4.1666650433E-2) * z - 4.9999999968E-1) * z + 1.0; */ /* measured relative error in +/- pi/4 is 7.8e-8 */ y = (( 2.443315711809948E-005 * z - 1.388731625493765E-003) * z + 4.166664568298827E-002) * z * z; y -= 0.5 * z; y += 1.0; } else { /* Theoretical relative error = 3.8e-9 in [-pi/4, +pi/4] */ y = ((-1.9515295891E-4 * z + 8.3321608736E-3) * z - 1.6666654611E-1) * z * x; y += x; } if(sign < 0) y = -y; return( y); } /* Single precision circular cosine * test interval: [-pi/4, +pi/4] * trials: 10000 * peak relative error: 8.3e-8 * rms relative error: 2.2e-8 */ float cosdgf( float xx ) { register float x, y, z; int j, sign; /* make argument positive */ sign = 1; x = xx; if( x < 0 ) x = -x; if( x > T24M1 ) { mtherr( "cosdgf", TLOSS ); return(0.0); } j = 0.02222222222222222222222 * x; /* integer part of x/PIO4 */ y = j; /* integer and fractional part modulo one octant */ if( j & 1 ) /* map zeros to origin */ { j += 1; y += 1.0; } j &= 7; if( j > 3) { j -=4; sign = -sign; } if( j > 1 ) sign = -sign; x = x - y * 45.0; /* x mod 45 degrees */ x *= PI180; /* multiply by pi/180 to convert to radians */ z = x * x; if( (j==1) || (j==2) ) { y = (((-1.9515295891E-4 * z + 8.3321608736E-3) * z - 1.6666654611E-1) * z * x) + x; } else { y = (( 2.443315711809948E-005 * z - 1.388731625493765E-003) * z + 4.166664568298827E-002) * z * z; y -= 0.5 * z; y += 1.0; } if(sign < 0) y = -y; return( y ); }