/* sicif.c * * Sine and cosine integrals * * * * SYNOPSIS: * * float x, Ci, Si; * * sicif( x, &Si, &Ci ); * * * DESCRIPTION: * * Evaluates the integrals * * x * - * | cos t - 1 * Ci(x) = eul + ln x + | --------- dt, * | t * - * 0 * x * - * | sin t * Si(x) = | ----- dt * | t * - * 0 * * where eul = 0.57721566490153286061 is Euler's constant. * The integrals are approximated by rational functions. * For x > 8 auxiliary functions f(x) and g(x) are employed * such that * * Ci(x) = f(x) sin(x) - g(x) cos(x) * Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x) * * * ACCURACY: * Test interval = [0,50]. * Absolute error, except relative when > 1: * arithmetic function # trials peak rms * IEEE Si 30000 2.1e-7 4.3e-8 * IEEE Ci 30000 3.9e-7 2.2e-8 */ /* Cephes Math Library Release 2.1: January, 1989 Copyright 1984, 1987, 1989 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include <math.h> static float SN[] = { -8.39167827910303881427E-11, 4.62591714427012837309E-8, -9.75759303843632795789E-6, 9.76945438170435310816E-4, -4.13470316229406538752E-2, 1.00000000000000000302E0, }; static float SD[] = { 2.03269266195951942049E-12, 1.27997891179943299903E-9, 4.41827842801218905784E-7, 9.96412122043875552487E-5, 1.42085239326149893930E-2, 9.99999999999999996984E-1, }; static float CN[] = { 2.02524002389102268789E-11, -1.35249504915790756375E-8, 3.59325051419993077021E-6, -4.74007206873407909465E-4, 2.89159652607555242092E-2, -1.00000000000000000080E0, }; static float CD[] = { 4.07746040061880559506E-12, 3.06780997581887812692E-9, 1.23210355685883423679E-6, 3.17442024775032769882E-4, 5.10028056236446052392E-2, 4.00000000000000000080E0, }; static float FN4[] = { 4.23612862892216586994E0, 5.45937717161812843388E0, 1.62083287701538329132E0, 1.67006611831323023771E-1, 6.81020132472518137426E-3, 1.08936580650328664411E-4, 5.48900223421373614008E-7, }; static float FD4[] = { /* 1.00000000000000000000E0,*/ 8.16496634205391016773E0, 7.30828822505564552187E0, 1.86792257950184183883E0, 1.78792052963149907262E-1, 7.01710668322789753610E-3, 1.10034357153915731354E-4, 5.48900252756255700982E-7, }; static float FN8[] = { 4.55880873470465315206E-1, 7.13715274100146711374E-1, 1.60300158222319456320E-1, 1.16064229408124407915E-2, 3.49556442447859055605E-4, 4.86215430826454749482E-6, 3.20092790091004902806E-8, 9.41779576128512936592E-11, 9.70507110881952024631E-14, }; static float FD8[] = { /* 1.00000000000000000000E0,*/ 9.17463611873684053703E-1, 1.78685545332074536321E-1, 1.22253594771971293032E-2, 3.58696481881851580297E-4, 4.92435064317881464393E-6, 3.21956939101046018377E-8, 9.43720590350276732376E-11, 9.70507110881952025725E-14, }; static float GN4[] = { 8.71001698973114191777E-2, 6.11379109952219284151E-1, 3.97180296392337498885E-1, 7.48527737628469092119E-2, 5.38868681462177273157E-3, 1.61999794598934024525E-4, 1.97963874140963632189E-6, 7.82579040744090311069E-9, }; static float GD4[] = { /* 1.00000000000000000000E0,*/ 1.64402202413355338886E0, 6.66296701268987968381E-1, 9.88771761277688796203E-2, 6.22396345441768420760E-3, 1.73221081474177119497E-4, 2.02659182086343991969E-6, 7.82579218933534490868E-9, }; static float GN8[] = { 6.97359953443276214934E-1, 3.30410979305632063225E-1, 3.84878767649974295920E-2, 1.71718239052347903558E-3, 3.48941165502279436777E-5, 3.47131167084116673800E-7, 1.70404452782044526189E-9, 3.85945925430276600453E-12, 3.14040098946363334640E-15, }; static float GD8[] = { /* 1.00000000000000000000E0,*/ 1.68548898811011640017E0, 4.87852258695304967486E-1, 4.67913194259625806320E-2, 1.90284426674399523638E-3, 3.68475504442561108162E-5, 3.57043223443740838771E-7, 1.72693748966316146736E-9, 3.87830166023954706752E-12, 3.14040098946363335242E-15, }; #define EUL 0.57721566490153286061 extern float MAXNUMF, PIO2F, MACHEPF; #ifdef ANSIC float logf(float), sinf(float), cosf(float); float polevlf(float, float *, int); float p1evlf(float, float *, int); #else float logf(), sinf(), cosf(), polevlf(), p1evlf(); #endif int sicif( float xx, float *si, float *ci ) { float x, z, c, s, f, g; int sign; x = xx; if( x < 0.0 ) { sign = -1; x = -x; } else sign = 0; if( x == 0.0 ) { *si = 0.0; *ci = -MAXNUMF; return( 0 ); } if( x > 1.0e9 ) { *si = PIO2F - cosf(x)/x; *ci = sinf(x)/x; return( 0 ); } if( x > 4.0 ) goto asympt; z = x * x; s = x * polevlf( z, SN, 5 ) / polevlf( z, SD, 5 ); c = z * polevlf( z, CN, 5 ) / polevlf( z, CD, 5 ); if( sign ) s = -s; *si = s; *ci = EUL + logf(x) + c; /* real part if x < 0 */ return(0); /* The auxiliary functions are: * * * *si = *si - PIO2; * c = cos(x); * s = sin(x); * * t = *ci * s - *si * c; * a = *ci * c + *si * s; * * *si = t; * *ci = -a; */ asympt: s = sinf(x); c = cosf(x); z = 1.0/(x*x); if( x < 8.0 ) { f = polevlf( z, FN4, 6 ) / (x * p1evlf( z, FD4, 7 )); g = z * polevlf( z, GN4, 7 ) / p1evlf( z, GD4, 7 ); } else { f = polevlf( z, FN8, 8 ) / (x * p1evlf( z, FD8, 8 )); g = z * polevlf( z, GN8, 8 ) / p1evlf( z, GD8, 9 ); } *si = PIO2F - f * c - g * s; if( sign ) *si = -( *si ); *ci = f * s - g * c; return(0); }