/* psif.c * * Psi (digamma) function * * * SYNOPSIS: * * float x, y, psif(); * * y = psif( x ); * * * DESCRIPTION: * * d - * psi(x) = -- ln | (x) * dx * * is the logarithmic derivative of the gamma function. * For integer x, * n-1 * - * psi(n) = -EUL + > 1/k. * - * k=1 * * This formula is used for 0 < n <= 10. If x is negative, it * is transformed to a positive argument by the reflection * formula psi(1-x) = psi(x) + pi cot(pi x). * For general positive x, the argument is made greater than 10 * using the recurrence psi(x+1) = psi(x) + 1/x. * Then the following asymptotic expansion is applied: * * inf. B * - 2k * psi(x) = log(x) - 1/2x - > ------- * - 2k * k=1 2k x * * where the B2k are Bernoulli numbers. * * ACCURACY: * Absolute error, relative when |psi| > 1 : * arithmetic domain # trials peak rms * IEEE -33,0 30000 8.2e-7 1.2e-7 * IEEE 0,33 100000 7.3e-7 7.7e-8 * * ERROR MESSAGES: * message condition value returned * psi singularity x integer <=0 MAXNUMF */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1984, 1987, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include <math.h> static float A[] = { -4.16666666666666666667E-3, 3.96825396825396825397E-3, -8.33333333333333333333E-3, 8.33333333333333333333E-2 }; #define EUL 0.57721566490153286061 extern float PIF, MAXNUMF; float floorf(float), logf(float), tanf(float); float polevlf(float, float *, int); float psif(float xx) { float p, q, nz, x, s, w, y, z; int i, n, negative; x = xx; nz = 0.0; negative = 0; if( x <= 0.0 ) { negative = 1; q = x; p = floorf(q); if( p == q ) { mtherr( "psif", SING ); return( MAXNUMF ); } nz = q - p; if( nz != 0.5 ) { if( nz > 0.5 ) { p += 1.0; nz = q - p; } nz = PIF/tanf(PIF*nz); } else { nz = 0.0; } x = 1.0 - x; } /* check for positive integer up to 10 */ if( (x <= 10.0) && (x == floorf(x)) ) { y = 0.0; n = x; for( i=1; i<n; i++ ) { w = i; y += 1.0/w; } y -= EUL; goto done; } s = x; w = 0.0; while( s < 10.0 ) { w += 1.0/s; s += 1.0; } if( s < 1.0e8 ) { z = 1.0/(s * s); y = z * polevlf( z, A, 3 ); } else y = 0.0; y = logf(s) - (0.5/s) - y - w; done: if( negative ) { y -= nz; } return(y); }