/* ndtrif.c * * Inverse of Normal distribution function * * * * SYNOPSIS: * * float x, y, ndtrif(); * * x = ndtrif( y ); * * * * DESCRIPTION: * * Returns the argument, x, for which the area under the * Gaussian probability density function (integrated from * minus infinity to x) is equal to y. * * * For small arguments 0 < y < exp(-2), the program computes * z = sqrt( -2.0 * log(y) ); then the approximation is * x = z - log(z)/z - (1/z) P(1/z) / Q(1/z). * There are two rational functions P/Q, one for 0 < y < exp(-32) * and the other for y up to exp(-2). For larger arguments, * w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)). * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 1e-38, 1 30000 3.6e-7 5.0e-8 * * * ERROR MESSAGES: * * message condition value returned * ndtrif domain x <= 0 -MAXNUM * ndtrif domain x >= 1 MAXNUM * */ /* Cephes Math Library Release 2.2: July, 1992 Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include extern float MAXNUMF; /* sqrt(2pi) */ static float s2pi = 2.50662827463100050242; /* approximation for 0 <= |y - 0.5| <= 3/8 */ static float P0[5] = { -5.99633501014107895267E1, 9.80010754185999661536E1, -5.66762857469070293439E1, 1.39312609387279679503E1, -1.23916583867381258016E0, }; static float Q0[8] = { /* 1.00000000000000000000E0,*/ 1.95448858338141759834E0, 4.67627912898881538453E0, 8.63602421390890590575E1, -2.25462687854119370527E2, 2.00260212380060660359E2, -8.20372256168333339912E1, 1.59056225126211695515E1, -1.18331621121330003142E0, }; /* Approximation for interval z = sqrt(-2 log y ) between 2 and 8 * i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14. */ static float P1[9] = { 4.05544892305962419923E0, 3.15251094599893866154E1, 5.71628192246421288162E1, 4.40805073893200834700E1, 1.46849561928858024014E1, 2.18663306850790267539E0, -1.40256079171354495875E-1, -3.50424626827848203418E-2, -8.57456785154685413611E-4, }; static float Q1[8] = { /* 1.00000000000000000000E0,*/ 1.57799883256466749731E1, 4.53907635128879210584E1, 4.13172038254672030440E1, 1.50425385692907503408E1, 2.50464946208309415979E0, -1.42182922854787788574E-1, -3.80806407691578277194E-2, -9.33259480895457427372E-4, }; /* Approximation for interval z = sqrt(-2 log y ) between 8 and 64 * i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890. */ static float P2[9] = { 3.23774891776946035970E0, 6.91522889068984211695E0, 3.93881025292474443415E0, 1.33303460815807542389E0, 2.01485389549179081538E-1, 1.23716634817820021358E-2, 3.01581553508235416007E-4, 2.65806974686737550832E-6, 6.23974539184983293730E-9, }; static float Q2[8] = { /* 1.00000000000000000000E0,*/ 6.02427039364742014255E0, 3.67983563856160859403E0, 1.37702099489081330271E0, 2.16236993594496635890E-1, 1.34204006088543189037E-2, 3.28014464682127739104E-4, 2.89247864745380683936E-6, 6.79019408009981274425E-9, }; #ifdef ANSIC float polevlf(float, float *, int); float p1evlf(float, float *, int); float logf(float), sqrtf(float); #else float polevlf(), p1evlf(), logf(), sqrtf(); #endif float ndtrif(float yy0) { float y0, x, y, z, y2, x0, x1; int code; y0 = yy0; if( y0 <= 0.0 ) { mtherr( "ndtrif", DOMAIN ); return( -MAXNUMF ); } if( y0 >= 1.0 ) { mtherr( "ndtrif", DOMAIN ); return( MAXNUMF ); } code = 1; y = y0; if( y > (1.0 - 0.13533528323661269189) ) /* 0.135... = exp(-2) */ { y = 1.0 - y; code = 0; } if( y > 0.13533528323661269189 ) { y = y - 0.5; y2 = y * y; x = y + y * (y2 * polevlf( y2, P0, 4)/p1evlf( y2, Q0, 8 )); x = x * s2pi; return(x); } x = sqrtf( -2.0 * logf(y) ); x0 = x - logf(x)/x; z = 1.0/x; if( x < 8.0 ) /* y > exp(-32) = 1.2664165549e-14 */ x1 = z * polevlf( z, P1, 8 )/p1evlf( z, Q1, 8 ); else x1 = z * polevlf( z, P2, 8 )/p1evlf( z, Q2, 8 ); x = x0 - x1; if( code != 0 ) x = -x; return( x ); }