/* j1f.c * * Bessel function of order one * * * * SYNOPSIS: * * float x, y, j1f(); * * y = j1f( x ); * * * * DESCRIPTION: * * Returns Bessel function of order one of the argument. * * The domain is divided into the intervals [0, 2] and * (2, infinity). In the first interval a polynomial approximation * 2 * (w - r ) x P(w) * 1 * 2 * is used, where w = x and r is the first zero of the function. * * In the second interval, the modulus and phase are approximated * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) * and Phase(x) = x + 1/x R(1/x^2) - 3pi/4. The function is * * j0(x) = Modulus(x) cos( Phase(x) ). * * * * ACCURACY: * * Absolute error: * arithmetic domain # trials peak rms * IEEE 0, 2 100000 1.2e-7 2.5e-8 * IEEE 2, 32 100000 2.0e-7 5.3e-8 * * */ /* y1.c * * Bessel function of second kind of order one * * * * SYNOPSIS: * * double x, y, y1(); * * y = y1( x ); * * * * DESCRIPTION: * * Returns Bessel function of the second kind of order one * of the argument. * * The domain is divided into the intervals [0, 2] and * (2, infinity). In the first interval a rational approximation * R(x) is employed to compute * * 2 * y0(x) = (w - r ) x R(x^2) + 2/pi (ln(x) j1(x) - 1/x) . * 1 * * Thus a call to j1() is required. * * In the second interval, the modulus and phase are approximated * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) * and Phase(x) = x + 1/x S(1/x^2) - 3pi/4. Then the function is * * y0(x) = Modulus(x) sin( Phase(x) ). * * * * * ACCURACY: * * Absolute error: * arithmetic domain # trials peak rms * IEEE 0, 2 100000 2.2e-7 4.6e-8 * IEEE 2, 32 100000 1.9e-7 5.3e-8 * * (error criterion relative when |y1| > 1). * */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include <math.h> static float JP[5] = { -4.878788132172128E-009f, 6.009061827883699E-007f, -4.541343896997497E-005f, 1.937383947804541E-003f, -3.405537384615824E-002f }; static float YP[5] = { 8.061978323326852E-009f, -9.496460629917016E-007f, 6.719543806674249E-005f, -2.641785726447862E-003f, 4.202369946500099E-002f }; static float MO1[8] = { 6.913942741265801E-002f, -2.284801500053359E-001f, 3.138238455499697E-001f, -2.102302420403875E-001f, 5.435364690523026E-003f, 1.493389585089498E-001f, 4.976029650847191E-006f, 7.978845453073848E-001f }; static float PH1[8] = { -4.497014141919556E+001f, 5.073465654089319E+001f, -2.485774108720340E+001f, 7.222973196770240E+000f, -1.544842782180211E+000f, 3.503787691653334E-001f, -1.637986776941202E-001f, 3.749989509080821E-001f }; static float YO1 = 4.66539330185668857532f; static float Z1 = 1.46819706421238932572E1f; static float THPIO4F = 2.35619449019234492885f; /* 3*pi/4 */ static float TWOOPI = 0.636619772367581343075535f; /* 2/pi */ extern float PIO4; float polevlf(float, float *, int); float logf(float), sinf(float), cosf(float), sqrtf(float); float j1f( float xx ) { float x, w, z, p, q, xn; x = xx; if( x < 0 ) x = -xx; if( x <= 2.0f ) { z = x * x; p = (z-Z1) * x * polevlf( z, JP, 4 ); return( p ); } q = 1.0f/x; w = sqrtf(q); p = w * polevlf( q, MO1, 7); w = q*q; xn = q * polevlf( w, PH1, 7) - THPIO4F; p = p * cosf(xn + x); return(p); } extern float MAXNUMF; float y1f( float xx ) { float x, w, z, p, q, xn; x = xx; if( x <= 2.0f ) { if( x <= 0.0f ) { mtherr( "y1f", DOMAIN ); return( -MAXNUMF ); } z = x * x; w = (z - YO1) * x * polevlf( z, YP, 4 ); w += TWOOPI * ( j1f(x) * logf(x) - 1.0f/x ); return( w ); } q = 1.0f/x; w = sqrtf(q); p = w * polevlf( q, MO1, 7); w = q*q; xn = q * polevlf( w, PH1, 7) - THPIO4F; p = p * sinf(xn + x); return(p); }