/* j0f.c * * Bessel function of order zero * * * * SYNOPSIS: * * float x, y, j0f(); * * y = j0f( x ); * * * * DESCRIPTION: * * Returns Bessel function of order zero of the argument. * * The domain is divided into the intervals [0, 2] and * (2, infinity). In the first interval the following polynomial * approximation is used: * * * 2 2 2 * (w - r ) (w - r ) (w - r ) P(w) * 1 2 3 * * 2 * where w = x and the three r's are zeros of the function. * * In the second interval, the modulus and phase are approximated * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) * and Phase(x) = x + 1/x R(1/x^2) - pi/4. The function is * * j0(x) = Modulus(x) cos( Phase(x) ). * * * * ACCURACY: * * Absolute error: * arithmetic domain # trials peak rms * IEEE 0, 2 100000 1.3e-7 3.6e-8 * IEEE 2, 32 100000 1.9e-7 5.4e-8 * */ /* y0f.c * * Bessel function of the second kind, order zero * * * * SYNOPSIS: * * float x, y, y0f(); * * y = y0f( x ); * * * * DESCRIPTION: * * Returns Bessel function of the second kind, of order * zero, of the argument. * * The domain is divided into the intervals [0, 2] and * (2, infinity). In the first interval a rational approximation * R(x) is employed to compute * * 2 2 2 * y0(x) = (w - r ) (w - r ) (w - r ) R(x) + 2/pi ln(x) j0(x). * 1 2 3 * * Thus a call to j0() is required. The three zeros are removed * from R(x) to improve its numerical stability. * * In the second interval, the modulus and phase are approximated * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) * and Phase(x) = x + 1/x S(1/x^2) - pi/4. Then the function is * * y0(x) = Modulus(x) sin( Phase(x) ). * * * * * ACCURACY: * * Absolute error, when y0(x) < 1; else relative error: * * arithmetic domain # trials peak rms * IEEE 0, 2 100000 2.4e-7 3.4e-8 * IEEE 2, 32 100000 1.8e-7 5.3e-8 * */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include <math.h> static float MO[8] = { -6.838999669318810E-002f, 1.864949361379502E-001f, -2.145007480346739E-001f, 1.197549369473540E-001f, -3.560281861530129E-003f, -4.969382655296620E-002f, -3.355424622293709E-006f, 7.978845717621440E-001f }; static float PH[8] = { 3.242077816988247E+001f, -3.630592630518434E+001f, 1.756221482109099E+001f, -4.974978466280903E+000f, 1.001973420681837E+000f, -1.939906941791308E-001f, 6.490598792654666E-002f, -1.249992184872738E-001f }; static float YP[5] = { 9.454583683980369E-008f, -9.413212653797057E-006f, 5.344486707214273E-004f, -1.584289289821316E-002f, 1.707584643733568E-001f }; float YZ1 = 0.43221455686510834878f; float YZ2 = 22.401876406482861405f; float YZ3 = 64.130620282338755553f; static float DR1 = 5.78318596294678452118f; /* static float DR2 = 30.4712623436620863991; static float DR3 = 74.887006790695183444889; */ static float JP[5] = { -6.068350350393235E-008f, 6.388945720783375E-006f, -3.969646342510940E-004f, 1.332913422519003E-002f, -1.729150680240724E-001f }; extern float PIO4F; float polevlf(float, float *, int); float logf(float), sinf(float), cosf(float), sqrtf(float); float j0f( float xx ) { float x, w, z, p, q, xn; if( xx < 0 ) x = -xx; else x = xx; if( x <= 2.0f ) { z = x * x; if( x < 1.0e-3f ) return( 1.0f - 0.25f*z ); p = (z-DR1) * polevlf( z, JP, 4); return( p ); } q = 1.0f/x; w = sqrtf(q); p = w * polevlf( q, MO, 7); w = q*q; xn = q * polevlf( w, PH, 7) - PIO4F; p = p * cosf(xn + x); return(p); } /* y0() 2 */ /* Bessel function of second kind, order zero */ /* Rational approximation coefficients YP[] are used for x < 6.5. * The function computed is y0(x) - 2 ln(x) j0(x) / pi, * whose value at x = 0 is 2 * ( log(0.5) + EUL ) / pi * = 0.073804295108687225 , EUL is Euler's constant. */ static float TWOOPI = 0.636619772367581343075535f; /* 2/pi */ extern float MAXNUMF; float y0f( float xx ) { float x, w, z, p, q, xn; x = xx; if( x <= 2.0f ) { if( x <= 0.0f ) { mtherr( "y0f", DOMAIN ); return( -MAXNUMF ); } z = x * x; /* w = (z-YZ1)*(z-YZ2)*(z-YZ3) * polevlf( z, YP, 4);*/ w = (z-YZ1) * polevlf( z, YP, 4); w += TWOOPI * logf(x) * j0f(x); return( w ); } q = 1.0f/x; w = sqrtf(q); p = w * polevlf( q, MO, 7); w = q*q; xn = q * polevlf( w, PH, 7) - PIO4F; p = p * sinf(xn + x); return( p ); }