/* i0f.c * * Modified Bessel function of order zero * * * * SYNOPSIS: * * float x, y, i0(); * * y = i0f( x ); * * * * DESCRIPTION: * * Returns modified Bessel function of order zero of the * argument. * * The function is defined as i0(x) = j0( ix ). * * The range is partitioned into the two intervals [0,8] and * (8, infinity). Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,30 100000 4.0e-7 7.9e-8 * */ /* i0ef.c * * Modified Bessel function of order zero, * exponentially scaled * * * * SYNOPSIS: * * float x, y, i0ef(); * * y = i0ef( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of order zero of the argument. * * The function is defined as i0e(x) = exp(-|x|) j0( ix ). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,30 100000 3.7e-7 7.0e-8 * See i0f(). * */ /* i0.c */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1984, 1987, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include <math.h> /* Chebyshev coefficients for exp(-x) I0(x) * in the interval [0,8]. * * lim(x->0){ exp(-x) I0(x) } = 1. */ static float A[] = { -1.30002500998624804212E-8f, 6.04699502254191894932E-8f, -2.67079385394061173391E-7f, 1.11738753912010371815E-6f, -4.41673835845875056359E-6f, 1.64484480707288970893E-5f, -5.75419501008210370398E-5f, 1.88502885095841655729E-4f, -5.76375574538582365885E-4f, 1.63947561694133579842E-3f, -4.32430999505057594430E-3f, 1.05464603945949983183E-2f, -2.37374148058994688156E-2f, 4.93052842396707084878E-2f, -9.49010970480476444210E-2f, 1.71620901522208775349E-1f, -3.04682672343198398683E-1f, 6.76795274409476084995E-1f }; /* Chebyshev coefficients for exp(-x) sqrt(x) I0(x) * in the inverted interval [8,infinity]. * * lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi). */ static float B[] = { 3.39623202570838634515E-9f, 2.26666899049817806459E-8f, 2.04891858946906374183E-7f, 2.89137052083475648297E-6f, 6.88975834691682398426E-5f, 3.36911647825569408990E-3f, 8.04490411014108831608E-1f }; float chbevlf(float, float *, int), expf(float), sqrtf(float); float i0f( float x ) { float y; if( x < 0 ) x = -x; if( x <= 8.0f ) { y = 0.5f*x - 2.0f; return( expf(x) * chbevlf( y, A, 18 ) ); } return( expf(x) * chbevlf( 32.0f/x - 2.0f, B, 7 ) / sqrtf(x) ); } float chbevlf(float, float *, int), expf(float), sqrtf(float); float i0ef( float x ) { float y; if( x < 0 ) x = -x; if( x <= 8.0f ) { y = 0.5f*x - 2.0f; return( chbevlf( y, A, 18 ) ); } return( chbevlf( 32.0f/x - 2.0f, B, 7 ) / sqrtf(x) ); }