/* ellief.c * * Incomplete elliptic integral of the second kind * * * * SYNOPSIS: * * float phi, m, y, ellief(); * * y = ellief( phi, m ); * * * * DESCRIPTION: * * Approximates the integral * * * phi * - * | | * | 2 * E(phi\m) = | sqrt( 1 - m sin t ) dt * | * | | * - * 0 * * of amplitude phi and modulus m, using the arithmetic - * geometric mean algorithm. * * * * ACCURACY: * * Tested at random arguments with phi in [0, 2] and m in * [0, 1]. * Relative error: * arithmetic domain # trials peak rms * IEEE 0,2 10000 4.5e-7 7.4e-8 * * */ /* Cephes Math Library Release 2.2: July, 1992 Copyright 1984, 1987, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ /* Incomplete elliptic integral of second kind */ #include <math.h> extern float PIF, PIO2F, MACHEPF; #define fabsf(x) ( (x) < 0 ? -(x) : (x) ) #ifdef ANSIC float sqrtf(float), logf(float), sinf(float), tanf(float), atanf(float); float ellpef(float), ellpkf(float); #else float sqrtf(), logf(), sinf(), tanf(), atanf(); float ellpef(), ellpkf(); #endif float ellief( float phia, float ma ) { float phi, m, a, b, c, e, temp; float lphi, t; int d, mod; phi = phia; m = ma; if( m == 0.0 ) return( phi ); if( m == 1.0 ) return( sinf(phi) ); lphi = phi; if( lphi < 0.0 ) lphi = -lphi; a = 1.0; b = 1.0 - m; b = sqrtf(b); c = sqrtf(m); d = 1; e = 0.0; t = tanf( lphi ); mod = (lphi + PIO2F)/PIF; while( fabsf(c/a) > MACHEPF ) { temp = b/a; lphi = lphi + atanf(t*temp) + mod * PIF; mod = (lphi + PIO2F)/PIF; t = t * ( 1.0 + temp )/( 1.0 - temp * t * t ); c = 0.5 * ( a - b ); temp = sqrtf( a * b ); a = 0.5 * ( a + b ); b = temp; d += d; e += c * sinf(lphi); } b = 1.0 - m; temp = ellpef(b)/ellpkf(b); temp *= (atanf(t) + mod * PIF)/(d * a); temp += e; if( phi < 0.0 ) temp = -temp; return( temp ); }