/* tan.c * * Circular tangent * * * * SYNOPSIS: * * double x, y, tan(); * * y = tan( x ); * * * * DESCRIPTION: * * Returns the circular tangent of the radian argument x. * * Range reduction is modulo pi/4. A rational function * x + x**3 P(x**2)/Q(x**2) * is employed in the basic interval [0, pi/4]. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC +-1.07e9 44000 4.1e-17 1.0e-17 * IEEE +-1.07e9 30000 2.9e-16 8.1e-17 * * ERROR MESSAGES: * * message condition value returned * tan total loss x > 1.073741824e9 0.0 * */ /* cot.c * * Circular cotangent * * * * SYNOPSIS: * * double x, y, cot(); * * y = cot( x ); * * * * DESCRIPTION: * * Returns the circular cotangent of the radian argument x. * * Range reduction is modulo pi/4. A rational function * x + x**3 P(x**2)/Q(x**2) * is employed in the basic interval [0, pi/4]. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE +-1.07e9 30000 2.9e-16 8.2e-17 * * * ERROR MESSAGES: * * message condition value returned * cot total loss x > 1.073741824e9 0.0 * cot singularity x = 0 INFINITY * */ /* Cephes Math Library Release 2.8: June, 2000 yright 1984, 1995, 2000 by Stephen L. Moshier */ #include <math.h> #ifdef UNK static double P[] = { -1.30936939181383777646E4, 1.15351664838587416140E6, -1.79565251976484877988E7 }; static double Q[] = { /* 1.00000000000000000000E0,*/ 1.36812963470692954678E4, -1.32089234440210967447E6, 2.50083801823357915839E7, -5.38695755929454629881E7 }; static double DP1 = 7.853981554508209228515625E-1; static double DP2 = 7.94662735614792836714E-9; static double DP3 = 3.06161699786838294307E-17; static double lossth = 1.073741824e9; #endif #ifdef DEC static unsigned short P[] = { 0143514,0113306,0111171,0174674, 0045214,0147545,0027744,0167346, 0146210,0177526,0114514,0105660 }; static unsigned short Q[] = { /*0040200,0000000,0000000,0000000,*/ 0043525,0142457,0072633,0025617, 0145241,0036742,0140525,0162256, 0046276,0146176,0013526,0143573, 0146515,0077401,0162762,0150607 }; /* 7.853981629014015197753906250000E-1 */ static unsigned short P1[] = {0040111,0007732,0120000,0000000,}; /* 4.960467869796758577649598009884E-10 */ static unsigned short P2[] = {0030410,0055060,0100000,0000000,}; /* 2.860594363054915898381331279295E-18 */ static unsigned short P3[] = {0021523,0011431,0105056,0001560,}; #define DP1 *(double *)P1 #define DP2 *(double *)P2 #define DP3 *(double *)P3 static double lossth = 1.073741824e9; #endif #ifdef IBMPC static unsigned short P[] = { 0x3f38,0xd24f,0x92d8,0xc0c9, 0x9ddd,0xa5fc,0x99ec,0x4131, 0x9176,0xd329,0x1fea,0xc171 }; static unsigned short Q[] = { /*0x0000,0x0000,0x0000,0x3ff0,*/ 0x6572,0xeeb3,0xb8a5,0x40ca, 0xbc96,0x582a,0x27bc,0xc134, 0xd8ef,0xc2ea,0xd98f,0x4177, 0x5a31,0x3cbe,0xafe0,0xc189 }; /* 7.85398125648498535156E-1, 3.77489470793079817668E-8, 2.69515142907905952645E-15, */ static unsigned short P1[] = {0x0000,0x4000,0x21fb,0x3fe9}; static unsigned short P2[] = {0x0000,0x0000,0x442d,0x3e64}; static unsigned short P3[] = {0x5170,0x98cc,0x4698,0x3ce8}; #define DP1 *(double *)P1 #define DP2 *(double *)P2 #define DP3 *(double *)P3 static double lossth = 1.073741824e9; #endif #ifdef MIEEE static unsigned short P[] = { 0xc0c9,0x92d8,0xd24f,0x3f38, 0x4131,0x99ec,0xa5fc,0x9ddd, 0xc171,0x1fea,0xd329,0x9176 }; static unsigned short Q[] = { 0x40ca,0xb8a5,0xeeb3,0x6572, 0xc134,0x27bc,0x582a,0xbc96, 0x4177,0xd98f,0xc2ea,0xd8ef, 0xc189,0xafe0,0x3cbe,0x5a31 }; static unsigned short P1[] = { 0x3fe9,0x21fb,0x4000,0x0000 }; static unsigned short P2[] = { 0x3e64,0x442d,0x0000,0x0000 }; static unsigned short P3[] = { 0x3ce8,0x4698,0x98cc,0x5170, }; #define DP1 *(double *)P1 #define DP2 *(double *)P2 #define DP3 *(double *)P3 static double lossth = 1.073741824e9; #endif #ifdef ANSIPROT extern double polevl ( double, void *, int ); extern double p1evl ( double, void *, int ); extern double floor ( double ); extern double ldexp ( double, int ); extern int isnan ( double ); extern int isfinite ( double ); static double tancot(double, int); #else double polevl(), p1evl(), floor(), ldexp(); static double tancot(); int isnan(), isfinite(); #endif extern double PIO4; extern double INFINITY; extern double NAN; double tan(x) double x; { #ifdef MINUSZERO if( x == 0.0 ) return(x); #endif #ifdef NANS if( isnan(x) ) return(x); if( !isfinite(x) ) { mtherr( "tan", DOMAIN ); return(NAN); } #endif return( tancot(x,0) ); } double cot(x) double x; { if( x == 0.0 ) { mtherr( "cot", SING ); return( INFINITY ); } return( tancot(x,1) ); } static double tancot( xx, cotflg ) double xx; int cotflg; { double x, y, z, zz; int j, sign; /* make argument positive but save the sign */ if( xx < 0 ) { x = -xx; sign = -1; } else { x = xx; sign = 1; } if( x > lossth ) { if( cotflg ) mtherr( "cot", TLOSS ); else mtherr( "tan", TLOSS ); return(0.0); } /* compute x mod PIO4 */ y = floor( x/PIO4 ); /* strip high bits of integer part */ z = ldexp( y, -3 ); z = floor(z); /* integer part of y/8 */ z = y - ldexp( z, 3 ); /* y - 16 * (y/16) */ /* integer and fractional part modulo one octant */ j = z; /* map zeros and singularities to origin */ if( j & 1 ) { j += 1; y += 1.0; } z = ((x - y * DP1) - y * DP2) - y * DP3; zz = z * z; if( zz > 1.0e-14 ) y = z + z * (zz * polevl( zz, P, 2 )/p1evl(zz, Q, 4)); else y = z; if( j & 2 ) { if( cotflg ) y = -y; else y = -1.0/y; } else { if( cotflg ) y = 1.0/y; } if( sign < 0 ) y = -y; return( y ); }