/* sqrt.c * * Square root * * * * SYNOPSIS: * * double x, y, sqrt(); * * y = sqrt( x ); * * * * DESCRIPTION: * * Returns the square root of x. * * Range reduction involves isolating the power of two of the * argument and using a polynomial approximation to obtain * a rough value for the square root. Then Heron's iteration * is used three times to converge to an accurate value. * * * * ACCURACY: * * * Relative error: * arithmetic domain # trials peak rms * DEC 0, 10 60000 2.1e-17 7.9e-18 * IEEE 0,1.7e308 30000 1.7e-16 6.3e-17 * * * ERROR MESSAGES: * * message condition value returned * sqrt domain x < 0 0.0 * */ /* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier */ #include <math.h> #ifdef ANSIPROT extern double frexp ( double, int * ); extern double ldexp ( double, int ); #else double frexp(), ldexp(); #endif extern double SQRT2; /* SQRT2 = 1.41421356237309504880 */ double sqrt(x) double x; { int e; #ifndef UNK short *q; #endif double z, w; if( x <= 0.0 ) { if( x < 0.0 ) mtherr( "sqrt", DOMAIN ); return( 0.0 ); } w = x; /* separate exponent and significand */ #ifdef UNK z = frexp( x, &e ); #endif #ifdef DEC q = (short *)&x; e = ((*q >> 7) & 0377) - 0200; *q &= 0177; *q |= 040000; z = x; #endif /* Note, frexp and ldexp are used in order to * handle denormal numbers properly. */ #ifdef IBMPC z = frexp( x, &e ); q = (short *)&x; q += 3; /* e = ((*q >> 4) & 0x0fff) - 0x3fe; *q &= 0x000f; *q |= 0x3fe0; z = x; */ #endif #ifdef MIEEE z = frexp( x, &e ); q = (short *)&x; /* e = ((*q >> 4) & 0x0fff) - 0x3fe; *q &= 0x000f; *q |= 0x3fe0; z = x; */ #endif /* approximate square root of number between 0.5 and 1 * relative error of approximation = 7.47e-3 */ x = 4.173075996388649989089E-1 + 5.9016206709064458299663E-1 * z; /* adjust for odd powers of 2 */ if( (e & 1) != 0 ) x *= SQRT2; /* re-insert exponent */ #ifdef UNK x = ldexp( x, (e >> 1) ); #endif #ifdef DEC *q += ((e >> 1) & 0377) << 7; *q &= 077777; #endif #ifdef IBMPC x = ldexp( x, (e >> 1) ); /* *q += ((e >>1) & 0x7ff) << 4; *q &= 077777; */ #endif #ifdef MIEEE x = ldexp( x, (e >> 1) ); /* *q += ((e >>1) & 0x7ff) << 4; *q &= 077777; */ #endif /* Newton iterations: */ #ifdef UNK x = 0.5*(x + w/x); x = 0.5*(x + w/x); x = 0.5*(x + w/x); #endif /* Note, assume the square root cannot be denormal, * so it is safe to use integer exponent operations here. */ #ifdef DEC x += w/x; *q -= 0200; x += w/x; *q -= 0200; x += w/x; *q -= 0200; #endif #ifdef IBMPC x += w/x; *q -= 0x10; x += w/x; *q -= 0x10; x += w/x; *q -= 0x10; #endif #ifdef MIEEE x += w/x; *q -= 0x10; x += w/x; *q -= 0x10; x += w/x; *q -= 0x10; #endif return(x); }