/* rgamma.c * * Reciprocal gamma function * * * * SYNOPSIS: * * double x, y, rgamma(); * * y = rgamma( x ); * * * * DESCRIPTION: * * Returns one divided by the gamma function of the argument. * * The function is approximated by a Chebyshev expansion in * the interval [0,1]. Range reduction is by recurrence * for arguments between -34.034 and +34.84425627277176174. * 1/MAXNUM is returned for positive arguments outside this * range. For arguments less than -34.034 the cosecant * reflection formula is applied; lograrithms are employed * to avoid unnecessary overflow. * * The reciprocal gamma function has no singularities, * but overflow and underflow may occur for large arguments. * These conditions return either MAXNUM or 1/MAXNUM with * appropriate sign. * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -30,+30 4000 1.2e-16 1.8e-17 * IEEE -30,+30 30000 1.1e-15 2.0e-16 * For arguments less than -34.034 the peak error is on the * order of 5e-15 (DEC), excepting overflow or underflow. */ /* Cephes Math Library Release 2.8: June, 2000 Copyright 1985, 1987, 2000 by Stephen L. Moshier */ #include <math.h> /* Chebyshev coefficients for reciprocal gamma function * in interval 0 to 1. Function is 1/(x gamma(x)) - 1 */ #ifdef UNK static double R[] = { 3.13173458231230000000E-17, -6.70718606477908000000E-16, 2.20039078172259550000E-15, 2.47691630348254132600E-13, -6.60074100411295197440E-12, 5.13850186324226978840E-11, 1.08965386454418662084E-9, -3.33964630686836942556E-8, 2.68975996440595483619E-7, 2.96001177518801696639E-6, -8.04814124978471142852E-5, 4.16609138709688864714E-4, 5.06579864028608725080E-3, -6.41925436109158228810E-2, -4.98558728684003594785E-3, 1.27546015610523951063E-1 }; #endif #ifdef DEC static unsigned short R[] = { 0022420,0066376,0176751,0071636, 0123501,0051114,0042104,0131153, 0024036,0107013,0126504,0033361, 0025613,0070040,0035174,0162316, 0126750,0037060,0077775,0122202, 0027541,0177143,0037675,0105150, 0030625,0141311,0075005,0115436, 0132017,0067714,0125033,0014721, 0032620,0063707,0105256,0152643, 0033506,0122235,0072757,0170053, 0134650,0144041,0015617,0016143, 0035332,0066125,0000776,0006215, 0036245,0177377,0137173,0131432, 0137203,0073541,0055645,0141150, 0136243,0057043,0026226,0017362, 0037402,0115554,0033441,0012310 }; #endif #ifdef IBMPC static unsigned short R[] = { 0x2e74,0xdfbd,0x0d9f,0x3c82, 0x964d,0x8888,0x2a49,0xbcc8, 0x86de,0x75a8,0xd1c1,0x3ce3, 0x9c9a,0x074f,0x6e04,0x3d51, 0xb490,0x0fff,0x07c6,0xbd9d, 0xb14d,0x67f7,0x3fcc,0x3dcc, 0xb364,0x2f40,0xb859,0x3e12, 0x633a,0x9543,0xedf9,0xbe61, 0xdab4,0xf155,0x0cf8,0x3e92, 0xfe05,0xaebd,0xd493,0x3ec8, 0xe38c,0x2371,0x1904,0xbf15, 0xc192,0xa03f,0x4d8a,0x3f3b, 0x7663,0xf7cf,0xbfdf,0x3f74, 0xb84d,0x2b74,0x6eec,0xbfb0, 0xc3de,0x6592,0x6bc4,0xbf74, 0x2299,0x86e4,0x536d,0x3fc0 }; #endif #ifdef MIEEE static unsigned short R[] = { 0x3c82,0x0d9f,0xdfbd,0x2e74, 0xbcc8,0x2a49,0x8888,0x964d, 0x3ce3,0xd1c1,0x75a8,0x86de, 0x3d51,0x6e04,0x074f,0x9c9a, 0xbd9d,0x07c6,0x0fff,0xb490, 0x3dcc,0x3fcc,0x67f7,0xb14d, 0x3e12,0xb859,0x2f40,0xb364, 0xbe61,0xedf9,0x9543,0x633a, 0x3e92,0x0cf8,0xf155,0xdab4, 0x3ec8,0xd493,0xaebd,0xfe05, 0xbf15,0x1904,0x2371,0xe38c, 0x3f3b,0x4d8a,0xa03f,0xc192, 0x3f74,0xbfdf,0xf7cf,0x7663, 0xbfb0,0x6eec,0x2b74,0xb84d, 0xbf74,0x6bc4,0x6592,0xc3de, 0x3fc0,0x536d,0x86e4,0x2299 }; #endif static char name[] = "rgamma"; #ifdef ANSIPROT extern double chbevl ( double, void *, int ); extern double exp ( double ); extern double log ( double ); extern double sin ( double ); extern double lgam ( double ); #else double chbevl(), exp(), log(), sin(), lgam(); #endif extern double PI, MAXLOG, MAXNUM; double rgamma(x) double x; { double w, y, z; int sign; if( x > 34.84425627277176174) { mtherr( name, UNDERFLOW ); return(1.0/MAXNUM); } if( x < -34.034 ) { w = -x; z = sin( PI*w ); if( z == 0.0 ) return(0.0); if( z < 0.0 ) { sign = 1; z = -z; } else sign = -1; y = log( w * z ) - log(PI) + lgam(w); if( y < -MAXLOG ) { mtherr( name, UNDERFLOW ); return( sign * 1.0 / MAXNUM ); } if( y > MAXLOG ) { mtherr( name, OVERFLOW ); return( sign * MAXNUM ); } return( sign * exp(y)); } z = 1.0; w = x; while( w > 1.0 ) /* Downward recurrence */ { w -= 1.0; z *= w; } while( w < 0.0 ) /* Upward recurrence */ { z /= w; w += 1.0; } if( w == 0.0 ) /* Nonpositive integer */ return(0.0); if( w == 1.0 ) /* Other integer */ return( 1.0/z ); y = w * ( 1.0 + chbevl( 4.0*w-2.0, R, 16 ) ) / z; return(y); }