/* pdtr.c * * Poisson distribution * * * * SYNOPSIS: * * int k; * double m, y, pdtr(); * * y = pdtr( k, m ); * * * * DESCRIPTION: * * Returns the sum of the first k terms of the Poisson * distribution: * * k j * -- -m m * > e -- * -- j! * j=0 * * The terms are not summed directly; instead the incomplete * gamma integral is employed, according to the relation * * y = pdtr( k, m ) = igamc( k+1, m ). * * The arguments must both be positive. * * * * ACCURACY: * * See igamc(). * */ /* pdtrc() * * Complemented poisson distribution * * * * SYNOPSIS: * * int k; * double m, y, pdtrc(); * * y = pdtrc( k, m ); * * * * DESCRIPTION: * * Returns the sum of the terms k+1 to infinity of the Poisson * distribution: * * inf. j * -- -m m * > e -- * -- j! * j=k+1 * * The terms are not summed directly; instead the incomplete * gamma integral is employed, according to the formula * * y = pdtrc( k, m ) = igam( k+1, m ). * * The arguments must both be positive. * * * * ACCURACY: * * See igam.c. * */ /* pdtri() * * Inverse Poisson distribution * * * * SYNOPSIS: * * int k; * double m, y, pdtr(); * * m = pdtri( k, y ); * * * * * DESCRIPTION: * * Finds the Poisson variable x such that the integral * from 0 to x of the Poisson density is equal to the * given probability y. * * This is accomplished using the inverse gamma integral * function and the relation * * m = igami( k+1, y ). * * * * * ACCURACY: * * See igami.c. * * ERROR MESSAGES: * * message condition value returned * pdtri domain y < 0 or y >= 1 0.0 * k < 0 * */ /* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier */ #include <math.h> #ifdef ANSIPROT extern double igam ( double, double ); extern double igamc ( double, double ); extern double igami ( double, double ); #else double igam(), igamc(), igami(); #endif double pdtrc( k, m ) int k; double m; { double v; if( (k < 0) || (m <= 0.0) ) { mtherr( "pdtrc", DOMAIN ); return( 0.0 ); } v = k+1; return( igam( v, m ) ); } double pdtr( k, m ) int k; double m; { double v; if( (k < 0) || (m <= 0.0) ) { mtherr( "pdtr", DOMAIN ); return( 0.0 ); } v = k+1; return( igamc( v, m ) ); } double pdtri( k, y ) int k; double y; { double v; if( (k < 0) || (y < 0.0) || (y >= 1.0) ) { mtherr( "pdtri", DOMAIN ); return( 0.0 ); } v = k+1; v = igami( v, y ); return( v ); }