/* j0.c * * Bessel function of order zero * * * * SYNOPSIS: * * double x, y, j0(); * * y = j0( x ); * * * * DESCRIPTION: * * Returns Bessel function of order zero of the argument. * * The domain is divided into the intervals [0, 5] and * (5, infinity). In the first interval the following rational * approximation is used: * * * 2 2 * (w - r ) (w - r ) P (w) / Q (w) * 1 2 3 8 * * 2 * where w = x and the two r's are zeros of the function. * * In the second interval, the Hankel asymptotic expansion * is employed with two rational functions of degree 6/6 * and 7/7. * * * * ACCURACY: * * Absolute error: * arithmetic domain # trials peak rms * DEC 0, 30 10000 4.4e-17 6.3e-18 * IEEE 0, 30 60000 4.2e-16 1.1e-16 * */ /* y0.c * * Bessel function of the second kind, order zero * * * * SYNOPSIS: * * double x, y, y0(); * * y = y0( x ); * * * * DESCRIPTION: * * Returns Bessel function of the second kind, of order * zero, of the argument. * * The domain is divided into the intervals [0, 5] and * (5, infinity). In the first interval a rational approximation * R(x) is employed to compute * y0(x) = R(x) + 2 * log(x) * j0(x) / PI. * Thus a call to j0() is required. * * In the second interval, the Hankel asymptotic expansion * is employed with two rational functions of degree 6/6 * and 7/7. * * * * ACCURACY: * * Absolute error, when y0(x) < 1; else relative error: * * arithmetic domain # trials peak rms * DEC 0, 30 9400 7.0e-17 7.9e-18 * IEEE 0, 30 30000 1.3e-15 1.6e-16 * */ /* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier */ /* Note: all coefficients satisfy the relative error criterion * except YP, YQ which are designed for absolute error. */ #include <math.h> #ifdef UNK static double PP[7] = { 7.96936729297347051624E-4, 8.28352392107440799803E-2, 1.23953371646414299388E0, 5.44725003058768775090E0, 8.74716500199817011941E0, 5.30324038235394892183E0, 9.99999999999999997821E-1, }; static double PQ[7] = { 9.24408810558863637013E-4, 8.56288474354474431428E-2, 1.25352743901058953537E0, 5.47097740330417105182E0, 8.76190883237069594232E0, 5.30605288235394617618E0, 1.00000000000000000218E0, }; #endif #ifdef DEC static unsigned short PP[28] = { 0035520,0164604,0140733,0054470, 0037251,0122605,0115356,0107170, 0040236,0124412,0071500,0056303, 0040656,0047737,0045720,0045263, 0041013,0172143,0045004,0142103, 0040651,0132045,0026241,0026406, 0040200,0000000,0000000,0000000, }; static unsigned short PQ[28] = { 0035562,0052006,0070034,0134666, 0037257,0057055,0055242,0123424, 0040240,0071626,0046630,0032371, 0040657,0011077,0032013,0012731, 0041014,0030307,0050331,0006414, 0040651,0145457,0065021,0150304, 0040200,0000000,0000000,0000000, }; #endif #ifdef IBMPC static unsigned short PP[28] = { 0x6b27,0x983b,0x1d30,0x3f4a, 0xd1cf,0xb35d,0x34b0,0x3fb5, 0x0b98,0x4e68,0xd521,0x3ff3, 0x0956,0xe97a,0xc9fb,0x4015, 0x9888,0x6940,0x7e8c,0x4021, 0x25a1,0xa594,0x3684,0x4015, 0x0000,0x0000,0x0000,0x3ff0, }; static unsigned short PQ[28] = { 0x9737,0xce03,0x4a80,0x3f4e, 0x54e3,0xab54,0xebc5,0x3fb5, 0x069f,0xc9b3,0x0e72,0x3ff4, 0x62bb,0xe681,0xe247,0x4015, 0x21a1,0xea1b,0x8618,0x4021, 0x3a19,0xed42,0x3965,0x4015, 0x0000,0x0000,0x0000,0x3ff0, }; #endif #ifdef MIEEE static unsigned short PP[28] = { 0x3f4a,0x1d30,0x983b,0x6b27, 0x3fb5,0x34b0,0xb35d,0xd1cf, 0x3ff3,0xd521,0x4e68,0x0b98, 0x4015,0xc9fb,0xe97a,0x0956, 0x4021,0x7e8c,0x6940,0x9888, 0x4015,0x3684,0xa594,0x25a1, 0x3ff0,0x0000,0x0000,0x0000, }; static unsigned short PQ[28] = { 0x3f4e,0x4a80,0xce03,0x9737, 0x3fb5,0xebc5,0xab54,0x54e3, 0x3ff4,0x0e72,0xc9b3,0x069f, 0x4015,0xe247,0xe681,0x62bb, 0x4021,0x8618,0xea1b,0x21a1, 0x4015,0x3965,0xed42,0x3a19, 0x3ff0,0x0000,0x0000,0x0000, }; #endif #ifdef UNK static double QP[8] = { -1.13663838898469149931E-2, -1.28252718670509318512E0, -1.95539544257735972385E1, -9.32060152123768231369E1, -1.77681167980488050595E2, -1.47077505154951170175E2, -5.14105326766599330220E1, -6.05014350600728481186E0, }; static double QQ[7] = { /* 1.00000000000000000000E0,*/ 6.43178256118178023184E1, 8.56430025976980587198E2, 3.88240183605401609683E3, 7.24046774195652478189E3, 5.93072701187316984827E3, 2.06209331660327847417E3, 2.42005740240291393179E2, }; #endif #ifdef DEC static unsigned short QP[32] = { 0136472,0035021,0142451,0141115, 0140244,0024731,0150620,0105642, 0141234,0067177,0124161,0060141, 0141672,0064572,0151557,0043036, 0142061,0127141,0003127,0043517, 0142023,0011727,0060271,0144544, 0141515,0122142,0126620,0143150, 0140701,0115306,0106715,0007344, }; static unsigned short QQ[28] = { /*0040200,0000000,0000000,0000000,*/ 0041600,0121272,0004741,0026544, 0042526,0015605,0105654,0161771, 0043162,0123155,0165644,0062645, 0043342,0041675,0167576,0130756, 0043271,0052720,0165631,0154214, 0043000,0160576,0034614,0172024, 0042162,0000570,0030500,0051235, }; #endif #ifdef IBMPC static unsigned short QP[32] = { 0x384a,0x38a5,0x4742,0xbf87, 0x1174,0x3a32,0x853b,0xbff4, 0x2c0c,0xf50e,0x8dcf,0xc033, 0xe8c4,0x5a6d,0x4d2f,0xc057, 0xe8ea,0x20ca,0x35cc,0xc066, 0x392d,0xec17,0x627a,0xc062, 0x18cd,0x55b2,0xb48c,0xc049, 0xa1dd,0xd1b9,0x3358,0xc018, }; static unsigned short QQ[28] = { /*0x0000,0x0000,0x0000,0x3ff0,*/ 0x25ac,0x413c,0x1457,0x4050, 0x9c7f,0xb175,0xc370,0x408a, 0x8cb5,0xbd74,0x54cd,0x40ae, 0xd63e,0xbdef,0x4877,0x40bc, 0x3b11,0x1d73,0x2aba,0x40b7, 0x9e82,0xc731,0x1c2f,0x40a0, 0x0a54,0x0628,0x402f,0x406e, }; #endif #ifdef MIEEE static unsigned short QP[32] = { 0xbf87,0x4742,0x38a5,0x384a, 0xbff4,0x853b,0x3a32,0x1174, 0xc033,0x8dcf,0xf50e,0x2c0c, 0xc057,0x4d2f,0x5a6d,0xe8c4, 0xc066,0x35cc,0x20ca,0xe8ea, 0xc062,0x627a,0xec17,0x392d, 0xc049,0xb48c,0x55b2,0x18cd, 0xc018,0x3358,0xd1b9,0xa1dd, }; static unsigned short QQ[28] = { /*0x3ff0,0x0000,0x0000,0x0000,*/ 0x4050,0x1457,0x413c,0x25ac, 0x408a,0xc370,0xb175,0x9c7f, 0x40ae,0x54cd,0xbd74,0x8cb5, 0x40bc,0x4877,0xbdef,0xd63e, 0x40b7,0x2aba,0x1d73,0x3b11, 0x40a0,0x1c2f,0xc731,0x9e82, 0x406e,0x402f,0x0628,0x0a54, }; #endif #ifdef UNK static double YP[8] = { 1.55924367855235737965E4, -1.46639295903971606143E7, 5.43526477051876500413E9, -9.82136065717911466409E11, 8.75906394395366999549E13, -3.46628303384729719441E15, 4.42733268572569800351E16, -1.84950800436986690637E16, }; static double YQ[7] = { /* 1.00000000000000000000E0,*/ 1.04128353664259848412E3, 6.26107330137134956842E5, 2.68919633393814121987E8, 8.64002487103935000337E10, 2.02979612750105546709E13, 3.17157752842975028269E15, 2.50596256172653059228E17, }; #endif #ifdef DEC static unsigned short YP[32] = { 0043563,0120677,0042264,0046166, 0146137,0140371,0113444,0042260, 0050241,0175707,0100502,0063344, 0152144,0125737,0007265,0164526, 0053637,0051621,0163035,0060546, 0155105,0004416,0107306,0060023, 0056035,0045133,0030132,0000024, 0155603,0065132,0144061,0131732, }; static unsigned short YQ[28] = { /*0040200,0000000,0000000,0000000,*/ 0042602,0024422,0135557,0162663, 0045030,0155665,0044075,0160135, 0047200,0035432,0105446,0104005, 0051240,0167331,0056063,0022743, 0053223,0127746,0025764,0012160, 0055064,0044206,0177532,0145545, 0056536,0111375,0163715,0127201, }; #endif #ifdef IBMPC static unsigned short YP[32] = { 0x898f,0xe896,0x7437,0x40ce, 0x8896,0x32e4,0xf81f,0xc16b, 0x4cdd,0xf028,0x3f78,0x41f4, 0xbd2b,0xe1d6,0x957b,0xc26c, 0xac2d,0x3cc3,0xea72,0x42d3, 0xcc02,0xd1d8,0xa121,0xc328, 0x4003,0x660b,0xa94b,0x4363, 0x367b,0x5906,0x6d4b,0xc350, }; static unsigned short YQ[28] = { /*0x0000,0x0000,0x0000,0x3ff0,*/ 0xfcb6,0x576d,0x4522,0x4090, 0xbc0c,0xa907,0x1b76,0x4123, 0xd101,0x5164,0x0763,0x41b0, 0x64bc,0x2b86,0x1ddb,0x4234, 0x828e,0xc57e,0x75fc,0x42b2, 0x596d,0xdfeb,0x8910,0x4326, 0xb5d0,0xbcf9,0xd25f,0x438b, }; #endif #ifdef MIEEE static unsigned short YP[32] = { 0x40ce,0x7437,0xe896,0x898f, 0xc16b,0xf81f,0x32e4,0x8896, 0x41f4,0x3f78,0xf028,0x4cdd, 0xc26c,0x957b,0xe1d6,0xbd2b, 0x42d3,0xea72,0x3cc3,0xac2d, 0xc328,0xa121,0xd1d8,0xcc02, 0x4363,0xa94b,0x660b,0x4003, 0xc350,0x6d4b,0x5906,0x367b, }; static unsigned short YQ[28] = { /*0x3ff0,0x0000,0x0000,0x0000,*/ 0x4090,0x4522,0x576d,0xfcb6, 0x4123,0x1b76,0xa907,0xbc0c, 0x41b0,0x0763,0x5164,0xd101, 0x4234,0x1ddb,0x2b86,0x64bc, 0x42b2,0x75fc,0xc57e,0x828e, 0x4326,0x8910,0xdfeb,0x596d, 0x438b,0xd25f,0xbcf9,0xb5d0, }; #endif #ifdef UNK /* 5.783185962946784521175995758455807035071 */ static double DR1 = 5.78318596294678452118E0; /* 30.47126234366208639907816317502275584842 */ static double DR2 = 3.04712623436620863991E1; #endif #ifdef DEC static unsigned short R1[] = {0040671,0007734,0001061,0056734}; #define DR1 *(double *)R1 static unsigned short R2[] = {0041363,0142445,0030416,0165567}; #define DR2 *(double *)R2 #endif #ifdef IBMPC static unsigned short R1[] = {0x2bbb,0x8046,0x21fb,0x4017}; #define DR1 *(double *)R1 static unsigned short R2[] = {0xdd6f,0xa621,0x78a4,0x403e}; #define DR2 *(double *)R2 #endif #ifdef MIEEE static unsigned short R1[] = {0x4017,0x21fb,0x8046,0x2bbb}; #define DR1 *(double *)R1 static unsigned short R2[] = {0x403e,0x78a4,0xa621,0xdd6f}; #define DR2 *(double *)R2 #endif #ifdef UNK static double RP[4] = { -4.79443220978201773821E9, 1.95617491946556577543E12, -2.49248344360967716204E14, 9.70862251047306323952E15, }; static double RQ[8] = { /* 1.00000000000000000000E0,*/ 4.99563147152651017219E2, 1.73785401676374683123E5, 4.84409658339962045305E7, 1.11855537045356834862E10, 2.11277520115489217587E12, 3.10518229857422583814E14, 3.18121955943204943306E16, 1.71086294081043136091E18, }; #endif #ifdef DEC static unsigned short RP[16] = { 0150216,0161235,0064344,0014450, 0052343,0135216,0035624,0144153, 0154142,0130247,0003310,0003667, 0055411,0173703,0047772,0176635, }; static unsigned short RQ[32] = { /*0040200,0000000,0000000,0000000,*/ 0042371,0144025,0032265,0136137, 0044451,0133131,0132420,0151466, 0046470,0144641,0072540,0030636, 0050446,0126600,0045042,0044243, 0052365,0172633,0110301,0071063, 0054215,0032424,0062272,0043513, 0055742,0005013,0171731,0072335, 0057275,0170646,0036663,0013134, }; #endif #ifdef IBMPC static unsigned short RP[16] = { 0x8325,0xad1c,0xdc53,0xc1f1, 0x990d,0xc772,0x7751,0x427c, 0x00f7,0xe0d9,0x5614,0xc2ec, 0x5fb4,0x69ff,0x3ef8,0x4341, }; static unsigned short RQ[32] = { /*0x0000,0x0000,0x0000,0x3ff0,*/ 0xb78c,0xa696,0x3902,0x407f, 0x1a67,0x36a2,0x36cb,0x4105, 0x0634,0x2eac,0x1934,0x4187, 0x4914,0x0944,0xd5b0,0x4204, 0x2e46,0x7218,0xbeb3,0x427e, 0x48e9,0x8c97,0xa6a2,0x42f1, 0x2e9c,0x7e7b,0x4141,0x435c, 0x62cc,0xc7b6,0xbe34,0x43b7, }; #endif #ifdef MIEEE static unsigned short RP[16] = { 0xc1f1,0xdc53,0xad1c,0x8325, 0x427c,0x7751,0xc772,0x990d, 0xc2ec,0x5614,0xe0d9,0x00f7, 0x4341,0x3ef8,0x69ff,0x5fb4, }; static unsigned short RQ[32] = { /*0x3ff0,0x0000,0x0000,0x0000,*/ 0x407f,0x3902,0xa696,0xb78c, 0x4105,0x36cb,0x36a2,0x1a67, 0x4187,0x1934,0x2eac,0x0634, 0x4204,0xd5b0,0x0944,0x4914, 0x427e,0xbeb3,0x7218,0x2e46, 0x42f1,0xa6a2,0x8c97,0x48e9, 0x435c,0x4141,0x7e7b,0x2e9c, 0x43b7,0xbe34,0xc7b6,0x62cc, }; #endif #ifdef ANSIPROT extern double polevl ( double, void *, int ); extern double p1evl ( double, void *, int ); extern double log ( double ); extern double sin ( double ); extern double cos ( double ); extern double sqrt ( double ); double j0 ( double ); #else double polevl(), p1evl(), log(), sin(), cos(), sqrt(); double j0(); #endif extern double TWOOPI, SQ2OPI, PIO4; double j0(x) double x; { double w, z, p, q, xn; if( x < 0 ) x = -x; if( x <= 5.0 ) { z = x * x; if( x < 1.0e-5 ) return( 1.0 - z/4.0 ); p = (z - DR1) * (z - DR2); p = p * polevl( z, RP, 3)/p1evl( z, RQ, 8 ); return( p ); } w = 5.0/x; q = 25.0/(x*x); p = polevl( q, PP, 6)/polevl( q, PQ, 6 ); q = polevl( q, QP, 7)/p1evl( q, QQ, 7 ); xn = x - PIO4; p = p * cos(xn) - w * q * sin(xn); return( p * SQ2OPI / sqrt(x) ); } /* y0() 2 */ /* Bessel function of second kind, order zero */ /* Rational approximation coefficients YP[], YQ[] are used here. * The function computed is y0(x) - 2 * log(x) * j0(x) / PI, * whose value at x = 0 is 2 * ( log(0.5) + EUL ) / PI * = 0.073804295108687225. */ /* #define PIO4 .78539816339744830962 #define SQ2OPI .79788456080286535588 */ extern double MAXNUM; double y0(x) double x; { double w, z, p, q, xn; if( x <= 5.0 ) { if( x <= 0.0 ) { mtherr( "y0", DOMAIN ); return( -MAXNUM ); } z = x * x; w = polevl( z, YP, 7) / p1evl( z, YQ, 7 ); w += TWOOPI * log(x) * j0(x); return( w ); } w = 5.0/x; z = 25.0 / (x * x); p = polevl( z, PP, 6)/polevl( z, PQ, 6 ); q = polevl( z, QP, 7)/p1evl( z, QQ, 7 ); xn = x - PIO4; p = p * sin(xn) + w * q * cos(xn); return( p * SQ2OPI / sqrt(x) ); }