/* ceil() * floor() * frexp() * ldexp() * signbit() * isnan() * isfinite() * * Floating point numeric utilities * * * * SYNOPSIS: * * double ceil(), floor(), frexp(), ldexp(); * int signbit(), isnan(), isfinite(); * double x, y; * int expnt, n; * * y = floor(x); * y = ceil(x); * y = frexp( x, &expnt ); * y = ldexp( x, n ); * n = signbit(x); * n = isnan(x); * n = isfinite(x); * * * * DESCRIPTION: * * All four routines return a double precision floating point * result. * * floor() returns the largest integer less than or equal to x. * It truncates toward minus infinity. * * ceil() returns the smallest integer greater than or equal * to x. It truncates toward plus infinity. * * frexp() extracts the exponent from x. It returns an integer * power of two to expnt and the significand between 0.5 and 1 * to y. Thus x = y * 2**expn. * * ldexp() multiplies x by 2**n. * * signbit(x) returns 1 if the sign bit of x is 1, else 0. * * These functions are part of the standard C run time library * for many but not all C compilers. The ones supplied are * written in C for either DEC or IEEE arithmetic. They should * be used only if your compiler library does not already have * them. * * The IEEE versions assume that denormal numbers are implemented * in the arithmetic. Some modifications will be required if * the arithmetic has abrupt rather than gradual underflow. */ /* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1995, 2000 by Stephen L. Moshier */ #include <math.h> #ifdef UNK /* ceil(), floor(), frexp(), ldexp() may need to be rewritten. */ #undef UNK #if BIGENDIAN #define MIEEE 1 #else #define IBMPC 1 #endif #endif #ifdef DEC #define EXPMSK 0x807f #define MEXP 255 #define NBITS 56 #endif #ifdef IBMPC #define EXPMSK 0x800f #define MEXP 0x7ff #define NBITS 53 #endif #ifdef MIEEE #define EXPMSK 0x800f #define MEXP 0x7ff #define NBITS 53 #endif extern double MAXNUM, NEGZERO; #ifdef ANSIPROT double floor ( double ); int isnan ( double ); int isfinite ( double ); double ldexp ( double, int ); #else double floor(); int isnan(), isfinite(); double ldexp(); #endif double ceil(x) double x; { double y; #ifdef UNK mtherr( "ceil", DOMAIN ); return(0.0); #endif #ifdef NANS if( isnan(x) ) return( x ); #endif #ifdef INFINITIES if(!isfinite(x)) return(x); #endif y = floor(x); if( y < x ) y += 1.0; #ifdef MINUSZERO if( y == 0.0 && x < 0.0 ) return( NEGZERO ); #endif return(y); } /* Bit clearing masks: */ static unsigned short bmask[] = { 0xffff, 0xfffe, 0xfffc, 0xfff8, 0xfff0, 0xffe0, 0xffc0, 0xff80, 0xff00, 0xfe00, 0xfc00, 0xf800, 0xf000, 0xe000, 0xc000, 0x8000, 0x0000, }; double floor(x) double x; { union { double y; unsigned short sh[4]; } u; unsigned short *p; int e; #ifdef UNK mtherr( "floor", DOMAIN ); return(0.0); #endif #ifdef NANS if( isnan(x) ) return( x ); #endif #ifdef INFINITIES if(!isfinite(x)) return(x); #endif #ifdef MINUSZERO if(x == 0.0L) return(x); #endif u.y = x; /* find the exponent (power of 2) */ #ifdef DEC p = (unsigned short *)&u.sh[0]; e = (( *p >> 7) & 0377) - 0201; p += 3; #endif #ifdef IBMPC p = (unsigned short *)&u.sh[3]; e = (( *p >> 4) & 0x7ff) - 0x3ff; p -= 3; #endif #ifdef MIEEE p = (unsigned short *)&u.sh[0]; e = (( *p >> 4) & 0x7ff) - 0x3ff; p += 3; #endif if( e < 0 ) { if( u.y < 0.0 ) return( -1.0 ); else return( 0.0 ); } e = (NBITS -1) - e; /* clean out 16 bits at a time */ while( e >= 16 ) { #ifdef IBMPC *p++ = 0; #endif #ifdef DEC *p-- = 0; #endif #ifdef MIEEE *p-- = 0; #endif e -= 16; } /* clear the remaining bits */ if( e > 0 ) *p &= bmask[e]; if( (x < 0) && (u.y != x) ) u.y -= 1.0; return(u.y); } double frexp( x, pw2 ) double x; int *pw2; { union { double y; unsigned short sh[4]; } u; int i; #ifdef DENORMAL int k; #endif short *q; u.y = x; #ifdef UNK mtherr( "frexp", DOMAIN ); return(0.0); #endif #ifdef IBMPC q = (short *)&u.sh[3]; #endif #ifdef DEC q = (short *)&u.sh[0]; #endif #ifdef MIEEE q = (short *)&u.sh[0]; #endif /* find the exponent (power of 2) */ #ifdef DEC i = ( *q >> 7) & 0377; if( i == 0 ) { *pw2 = 0; return(0.0); } i -= 0200; *pw2 = i; *q &= 0x807f; /* strip all exponent bits */ *q |= 040000; /* mantissa between 0.5 and 1 */ return(u.y); #endif #ifdef IBMPC i = ( *q >> 4) & 0x7ff; if( i != 0 ) goto ieeedon; #endif #ifdef MIEEE i = *q >> 4; i &= 0x7ff; if( i != 0 ) goto ieeedon; #ifdef DENORMAL #else *pw2 = 0; return(0.0); #endif #endif #ifndef DEC /* Number is denormal or zero */ #ifdef DENORMAL if( u.y == 0.0 ) { *pw2 = 0; return( 0.0 ); } /* Handle denormal number. */ do { u.y *= 2.0; i -= 1; k = ( *q >> 4) & 0x7ff; } while( k == 0 ); i = i + k; #endif /* DENORMAL */ ieeedon: i -= 0x3fe; *pw2 = i; *q &= 0x800f; *q |= 0x3fe0; return( u.y ); #endif } double ldexp( x, pw2 ) double x; int pw2; { union { double y; unsigned short sh[4]; } u; short *q; int e; #ifdef UNK mtherr( "ldexp", DOMAIN ); return(0.0); #endif u.y = x; #ifdef DEC q = (short *)&u.sh[0]; e = ( *q >> 7) & 0377; if( e == 0 ) return(0.0); #else #ifdef IBMPC q = (short *)&u.sh[3]; #endif #ifdef MIEEE q = (short *)&u.sh[0]; #endif while( (e = (*q & 0x7ff0) >> 4) == 0 ) { if( u.y == 0.0 ) { return( 0.0 ); } /* Input is denormal. */ if( pw2 > 0 ) { u.y *= 2.0; pw2 -= 1; } if( pw2 < 0 ) { if( pw2 < -53 ) return(0.0); u.y /= 2.0; pw2 += 1; } if( pw2 == 0 ) return(u.y); } #endif /* not DEC */ e += pw2; /* Handle overflow */ #ifdef DEC if( e > MEXP ) return( MAXNUM ); #else if( e >= MEXP ) return( 2.0*MAXNUM ); #endif /* Handle denormalized results */ if( e < 1 ) { #ifdef DENORMAL if( e < -53 ) return(0.0); *q &= 0x800f; *q |= 0x10; /* For denormals, significant bits may be lost even when dividing by 2. Construct 2^-(1-e) so the result is obtained with only one multiplication. */ u.y *= ldexp(1.0, e-1); return(u.y); #else return(0.0); #endif } else { #ifdef DEC *q &= 0x807f; /* strip all exponent bits */ *q |= (e & 0xff) << 7; #else *q &= 0x800f; *q |= (e & 0x7ff) << 4; #endif return(u.y); } }