/* ellpk.c * * Complete elliptic integral of the first kind * * * * SYNOPSIS: * * double m1, y, ellpk(); * * y = ellpk( m1 ); * * * * DESCRIPTION: * * Approximates the integral * * * * pi/2 * - * | | * | dt * K(m) = | ------------------ * | 2 * | | sqrt( 1 - m sin t ) * - * 0 * * where m = 1 - m1, using the approximation * * P(x) - log x Q(x). * * The argument m1 is used rather than m so that the logarithmic * singularity at m = 1 will be shifted to the origin; this * preserves maximum accuracy. * * K(0) = pi/2. * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC 0,1 16000 3.5e-17 1.1e-17 * IEEE 0,1 30000 2.5e-16 6.8e-17 * * ERROR MESSAGES: * * message condition value returned * ellpk domain x<0, x>1 0.0 * */ /* ellpk.c */ /* Cephes Math Library, Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier */ #include <math.h> #ifdef DEC static unsigned short P[] = { 0035020,0127576,0040430,0051544, 0036025,0070136,0042703,0153716, 0036402,0122614,0062555,0077777, 0036441,0102130,0072334,0025172, 0036341,0043320,0117242,0172076, 0036312,0146456,0077242,0154141, 0036420,0003467,0013727,0035407, 0036564,0137263,0110651,0020237, 0036775,0001330,0144056,0020305, 0037305,0144137,0157521,0141734, 0040261,0071027,0173721,0147572 }; static unsigned short Q[] = { 0034366,0130371,0103453,0077633, 0035557,0122745,0173515,0113016, 0036302,0124470,0167304,0074473, 0036575,0132403,0117226,0117576, 0036703,0156271,0047124,0147733, 0036766,0137465,0002053,0157312, 0037031,0014423,0154274,0176515, 0037107,0177747,0143216,0016145, 0037217,0177777,0172621,0074000, 0037377,0177777,0177776,0156435, 0040000,0000000,0000000,0000000 }; static unsigned short ac1[] = {0040261,0071027,0173721,0147572}; #define C1 (*(double *)ac1) #endif #ifdef IBMPC static unsigned short P[] = { 0x0a6d,0xc823,0x15ef,0x3f22, 0x7afa,0xc8b8,0xae0b,0x3f62, 0xb000,0x8cad,0x54b1,0x3f80, 0x854f,0x0e9b,0x308b,0x3f84, 0x5e88,0x13d4,0x28da,0x3f7c, 0x5b0c,0xcfd4,0x59a5,0x3f79, 0xe761,0xe2fa,0x00e6,0x3f82, 0x2414,0x7235,0x97d6,0x3f8e, 0xc419,0x1905,0xa05b,0x3f9f, 0x387c,0xfbea,0xb90b,0x3fb8, 0x39ef,0xfefa,0x2e42,0x3ff6 }; static unsigned short Q[] = { 0x6ff3,0x30e5,0xd61f,0x3efe, 0xb2c2,0xbee9,0xf4bc,0x3f4d, 0x8f27,0x1dd8,0x5527,0x3f78, 0xd3f0,0x73d2,0xb6a0,0x3f8f, 0x99fb,0x29ca,0x7b97,0x3f98, 0x7bd9,0xa085,0xd7e6,0x3f9e, 0x9faa,0x7b17,0x2322,0x3fa3, 0xc38d,0xf8d1,0xfffc,0x3fa8, 0x2f00,0xfeb2,0xffff,0x3fb1, 0xdba4,0xffff,0xffff,0x3fbf, 0x0000,0x0000,0x0000,0x3fe0 }; static unsigned short ac1[] = {0x39ef,0xfefa,0x2e42,0x3ff6}; #define C1 (*(double *)ac1) #endif #ifdef MIEEE static unsigned short P[] = { 0x3f22,0x15ef,0xc823,0x0a6d, 0x3f62,0xae0b,0xc8b8,0x7afa, 0x3f80,0x54b1,0x8cad,0xb000, 0x3f84,0x308b,0x0e9b,0x854f, 0x3f7c,0x28da,0x13d4,0x5e88, 0x3f79,0x59a5,0xcfd4,0x5b0c, 0x3f82,0x00e6,0xe2fa,0xe761, 0x3f8e,0x97d6,0x7235,0x2414, 0x3f9f,0xa05b,0x1905,0xc419, 0x3fb8,0xb90b,0xfbea,0x387c, 0x3ff6,0x2e42,0xfefa,0x39ef }; static unsigned short Q[] = { 0x3efe,0xd61f,0x30e5,0x6ff3, 0x3f4d,0xf4bc,0xbee9,0xb2c2, 0x3f78,0x5527,0x1dd8,0x8f27, 0x3f8f,0xb6a0,0x73d2,0xd3f0, 0x3f98,0x7b97,0x29ca,0x99fb, 0x3f9e,0xd7e6,0xa085,0x7bd9, 0x3fa3,0x2322,0x7b17,0x9faa, 0x3fa8,0xfffc,0xf8d1,0xc38d, 0x3fb1,0xffff,0xfeb2,0x2f00, 0x3fbf,0xffff,0xffff,0xdba4, 0x3fe0,0x0000,0x0000,0x0000 }; static unsigned short ac1[] = { 0x3ff6,0x2e42,0xfefa,0x39ef }; #define C1 (*(double *)ac1) #endif #ifdef UNK static double P[] = { 1.37982864606273237150E-4, 2.28025724005875567385E-3, 7.97404013220415179367E-3, 9.85821379021226008714E-3, 6.87489687449949877925E-3, 6.18901033637687613229E-3, 8.79078273952743772254E-3, 1.49380448916805252718E-2, 3.08851465246711995998E-2, 9.65735902811690126535E-2, 1.38629436111989062502E0 }; static double Q[] = { 2.94078955048598507511E-5, 9.14184723865917226571E-4, 5.94058303753167793257E-3, 1.54850516649762399335E-2, 2.39089602715924892727E-2, 3.01204715227604046988E-2, 3.73774314173823228969E-2, 4.88280347570998239232E-2, 7.03124996963957469739E-2, 1.24999999999870820058E-1, 4.99999999999999999821E-1 }; static double C1 = 1.3862943611198906188E0; /* log(4) */ #endif #ifdef ANSIPROT extern double polevl ( double, void *, int ); extern double p1evl ( double, void *, int ); extern double log ( double ); #else double polevl(), p1evl(), log(); #endif extern double MACHEP, MAXNUM; double ellpk(x) double x; { if( (x < 0.0) || (x > 1.0) ) { mtherr( "ellpk", DOMAIN ); return( 0.0 ); } if( x > MACHEP ) { return( polevl(x,P,10) - log(x) * polevl(x,Q,10) ); } else { if( x == 0.0 ) { mtherr( "ellpk", SING ); return( MAXNUM ); } else { return( C1 - 0.5 * log(x) ); } } }