/* ellik.c * * Incomplete elliptic integral of the first kind * * * * SYNOPSIS: * * double phi, m, y, ellik(); * * y = ellik( phi, m ); * * * * DESCRIPTION: * * Approximates the integral * * * * phi * - * | | * | dt * F(phi_\m) = | ------------------ * | 2 * | | sqrt( 1 - m sin t ) * - * 0 * * of amplitude phi and modulus m, using the arithmetic - * geometric mean algorithm. * * * * * ACCURACY: * * Tested at random points with m in [0, 1] and phi as indicated. * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,10 200000 7.4e-16 1.0e-16 * * */ /* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier */ /* Incomplete elliptic integral of first kind */ #include <math.h> #ifdef ANSIPROT extern double sqrt ( double ); extern double fabs ( double ); extern double log ( double ); extern double tan ( double ); extern double atan ( double ); extern double floor ( double ); extern double ellpk ( double ); double ellik ( double, double ); #else double sqrt(), fabs(), log(), tan(), atan(), floor(), ellpk(); double ellik(); #endif extern double PI, PIO2, MACHEP, MAXNUM; double ellik( phi, m ) double phi, m; { double a, b, c, e, temp, t, K; int d, mod, sign, npio2; if( m == 0.0 ) return( phi ); a = 1.0 - m; if( a == 0.0 ) { if( fabs(phi) >= PIO2 ) { mtherr( "ellik", SING ); return( MAXNUM ); } return( log( tan( (PIO2 + phi)/2.0 ) ) ); } npio2 = floor( phi/PIO2 ); if( npio2 & 1 ) npio2 += 1; if( npio2 ) { K = ellpk( a ); phi = phi - npio2 * PIO2; } else K = 0.0; if( phi < 0.0 ) { phi = -phi; sign = -1; } else sign = 0; b = sqrt(a); t = tan( phi ); if( fabs(t) > 10.0 ) { /* Transform the amplitude */ e = 1.0/(b*t); /* ... but avoid multiple recursions. */ if( fabs(e) < 10.0 ) { e = atan(e); if( npio2 == 0 ) K = ellpk( a ); temp = K - ellik( e, m ); goto done; } } a = 1.0; c = sqrt(m); d = 1; mod = 0; while( fabs(c/a) > MACHEP ) { temp = b/a; phi = phi + atan(t*temp) + mod * PI; mod = (phi + PIO2)/PI; t = t * ( 1.0 + temp )/( 1.0 - temp * t * t ); c = ( a - b )/2.0; temp = sqrt( a * b ); a = ( a + b )/2.0; b = temp; d += d; } temp = (atan(t) + mod * PI)/(d * a); done: if( sign < 0 ) temp = -temp; temp += npio2 * K; return( temp ); }