/*							acosh.c
 *
 *	Inverse hyperbolic cosine
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, acosh();
 *
 * y = acosh( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns inverse hyperbolic cosine of argument.
 *
 * If 1 <= x < 1.5, a rational approximation
 *
 *	sqrt(z) * P(z)/Q(z)
 *
 * where z = x-1, is used.  Otherwise,
 *
 * acosh(x)  =  log( x + sqrt( (x-1)(x+1) ).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       1,3         30000       4.2e-17     1.1e-17
 *    IEEE      1,3         30000       4.6e-16     8.7e-17
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * acosh domain       |x| < 1            NAN
 *
 */

/*							airy.c
 *
 *	Airy function
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, ai, aip, bi, bip;
 * int airy();
 *
 * airy( x, _&ai, _&aip, _&bi, _&bip );
 *
 *
 *
 * DESCRIPTION:
 *
 * Solution of the differential equation
 *
 *	y"(x) = xy.
 *
 * The function returns the two independent solutions Ai, Bi
 * and their first derivatives Ai'(x), Bi'(x).
 *
 * Evaluation is by power series summation for small x,
 * by rational minimax approximations for large x.
 *
 *
 *
 * ACCURACY:
 * Error criterion is absolute when function <= 1, relative
 * when function > 1, except * denotes relative error criterion.
 * For large negative x, the absolute error increases as x^1.5.
 * For large positive x, the relative error increases as x^1.5.
 *
 * Arithmetic  domain   function  # trials      peak         rms
 * IEEE        -10, 0     Ai        10000       1.6e-15     2.7e-16
 * IEEE          0, 10    Ai        10000       2.3e-14*    1.8e-15*
 * IEEE        -10, 0     Ai'       10000       4.6e-15     7.6e-16
 * IEEE          0, 10    Ai'       10000       1.8e-14*    1.5e-15*
 * IEEE        -10, 10    Bi        30000       4.2e-15     5.3e-16
 * IEEE        -10, 10    Bi'       30000       4.9e-15     7.3e-16
 * DEC         -10, 0     Ai         5000       1.7e-16     2.8e-17
 * DEC           0, 10    Ai         5000       2.1e-15*    1.7e-16*
 * DEC         -10, 0     Ai'        5000       4.7e-16     7.8e-17
 * DEC           0, 10    Ai'       12000       1.8e-15*    1.5e-16*
 * DEC         -10, 10    Bi        10000       5.5e-16     6.8e-17
 * DEC         -10, 10    Bi'        7000       5.3e-16     8.7e-17
 *
 */

/*							asin.c
 *
 *	Inverse circular sine
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, asin();
 *
 * y = asin( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns radian angle between -pi/2 and +pi/2 whose sine is x.
 *
 * A rational function of the form x + x**3 P(x**2)/Q(x**2)
 * is used for |x| in the interval [0, 0.5].  If |x| > 0.5 it is
 * transformed by the identity
 *
 *    asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ).
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC      -1, 1        40000       2.6e-17     7.1e-18
 *    IEEE     -1, 1        10^6        1.9e-16     5.4e-17
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * asin domain        |x| > 1           NAN
 *
 */
/*							acos()
 *
 *	Inverse circular cosine
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, acos();
 *
 * y = acos( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns radian angle between 0 and pi whose cosine
 * is x.
 *
 * Analytically, acos(x) = pi/2 - asin(x).  However if |x| is
 * near 1, there is cancellation error in subtracting asin(x)
 * from pi/2.  Hence if x < -0.5,
 *
 *    acos(x) =	 pi - 2.0 * asin( sqrt((1+x)/2) );
 *
 * or if x > +0.5,
 *
 *    acos(x) =	 2.0 * asin(  sqrt((1-x)/2) ).
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -1, 1       50000       3.3e-17     8.2e-18
 *    IEEE      -1, 1       10^6        2.2e-16     6.5e-17
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * asin domain        |x| > 1           NAN
 */

/*							asinh.c
 *
 *	Inverse hyperbolic sine
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, asinh();
 *
 * y = asinh( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns inverse hyperbolic sine of argument.
 *
 * If |x| < 0.5, the function is approximated by a rational
 * form  x + x**3 P(x)/Q(x).  Otherwise,
 *
 *     asinh(x) = log( x + sqrt(1 + x*x) ).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC      -3,3         75000       4.6e-17     1.1e-17
 *    IEEE     -1,1         30000       3.7e-16     7.8e-17
 *    IEEE      1,3         30000       2.5e-16     6.7e-17
 *
 */

/*							atan.c
 *
 *	Inverse circular tangent
 *      (arctangent)
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, atan();
 *
 * y = atan( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns radian angle between -pi/2 and +pi/2 whose tangent
 * is x.
 *
 * Range reduction is from three intervals into the interval
 * from zero to 0.66.  The approximant uses a rational
 * function of degree 4/5 of the form x + x**3 P(x)/Q(x).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10, 10     50000       2.4e-17     8.3e-18
 *    IEEE      -10, 10      10^6       1.8e-16     5.0e-17
 *
 */
/*							atan2()
 *
 *	Quadrant correct inverse circular tangent
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, z, atan2();
 *
 * z = atan2( y, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns radian angle whose tangent is y/x.
 * Define compile time symbol ANSIC = 1 for ANSI standard,
 * range -PI < z <= +PI, args (y,x); else ANSIC = 0 for range
 * 0 to 2PI, args (x,y).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      -10, 10      10^6       2.5e-16     6.9e-17
 * See atan.c.
 *
 */

/*							atanh.c
 *
 *	Inverse hyperbolic tangent
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, atanh();
 *
 * y = atanh( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns inverse hyperbolic tangent of argument in the range
 * MINLOG to MAXLOG.
 *
 * If |x| < 0.5, the rational form x + x**3 P(x)/Q(x) is
 * employed.  Otherwise,
 *        atanh(x) = 0.5 * log( (1+x)/(1-x) ).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -1,1        50000       2.4e-17     6.4e-18
 *    IEEE      -1,1        30000       1.9e-16     5.2e-17
 *
 */

/*							bdtr.c
 *
 *	Binomial distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int k, n;
 * double p, y, bdtr();
 *
 * y = bdtr( k, n, p );
 *
 * DESCRIPTION:
 *
 * Returns the sum of the terms 0 through k of the Binomial
 * probability density:
 *
 *   k
 *   --  ( n )   j      n-j
 *   >   (   )  p  (1-p)
 *   --  ( j )
 *  j=0
 *
 * The terms are not summed directly; instead the incomplete
 * beta integral is employed, according to the formula
 *
 * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
 *
 * The arguments must be positive, with p ranging from 0 to 1.
 *
 * ACCURACY:
 *
 * Tested at random points (a,b,p), with p between 0 and 1.
 *
 *               a,b                     Relative error:
 * arithmetic  domain     # trials      peak         rms
 *  For p between 0.001 and 1:
 *    IEEE     0,100       100000      4.3e-15     2.6e-16
 * See also incbet.c.
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * bdtr domain         k < 0            0.0
 *                     n < k
 *                     x < 0, x > 1
 */
/*							bdtrc()
 *
 *	Complemented binomial distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int k, n;
 * double p, y, bdtrc();
 *
 * y = bdtrc( k, n, p );
 *
 * DESCRIPTION:
 *
 * Returns the sum of the terms k+1 through n of the Binomial
 * probability density:
 *
 *   n
 *   --  ( n )   j      n-j
 *   >   (   )  p  (1-p)
 *   --  ( j )
 *  j=k+1
 *
 * The terms are not summed directly; instead the incomplete
 * beta integral is employed, according to the formula
 *
 * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
 *
 * The arguments must be positive, with p ranging from 0 to 1.
 *
 * ACCURACY:
 *
 * Tested at random points (a,b,p).
 *
 *               a,b                     Relative error:
 * arithmetic  domain     # trials      peak         rms
 *  For p between 0.001 and 1:
 *    IEEE     0,100       100000      6.7e-15     8.2e-16
 *  For p between 0 and .001:
 *    IEEE     0,100       100000      1.5e-13     2.7e-15
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * bdtrc domain      x<0, x>1, n<k       0.0
 */
/*							bdtri()
 *
 *	Inverse binomial distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int k, n;
 * double p, y, bdtri();
 *
 * p = bdtr( k, n, y );
 *
 * DESCRIPTION:
 *
 * Finds the event probability p such that the sum of the
 * terms 0 through k of the Binomial probability density
 * is equal to the given cumulative probability y.
 *
 * This is accomplished using the inverse beta integral
 * function and the relation
 *
 * 1 - p = incbi( n-k, k+1, y ).
 *
 * ACCURACY:
 *
 * Tested at random points (a,b,p).
 *
 *               a,b                     Relative error:
 * arithmetic  domain     # trials      peak         rms
 *  For p between 0.001 and 1:
 *    IEEE     0,100       100000      2.3e-14     6.4e-16
 *    IEEE     0,10000     100000      6.6e-12     1.2e-13
 *  For p between 10^-6 and 0.001:
 *    IEEE     0,100       100000      2.0e-12     1.3e-14
 *    IEEE     0,10000     100000      1.5e-12     3.2e-14
 * See also incbi.c.
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * bdtri domain     k < 0, n <= k         0.0
 *                  x < 0, x > 1
 */

/*							beta.c
 *
 *	Beta function
 *
 *
 *
 * SYNOPSIS:
 *
 * double a, b, y, beta();
 *
 * y = beta( a, b );
 *
 *
 *
 * DESCRIPTION:
 *
 *                   -     -
 *                  | (a) | (b)
 * beta( a, b )  =  -----------.
 *                     -
 *                    | (a+b)
 *
 * For large arguments the logarithm of the function is
 * evaluated using lgam(), then exponentiated.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC        0,30        1700       7.7e-15     1.5e-15
 *    IEEE       0,30       30000       8.1e-14     1.1e-14
 *
 * ERROR MESSAGES:
 *
 *   message         condition          value returned
 * beta overflow    log(beta) > MAXLOG       0.0
 *                  a or b <0 integer        0.0
 *
 */

/*							btdtr.c
 *
 *	Beta distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * double a, b, x, y, btdtr();
 *
 * y = btdtr( a, b, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the area from zero to x under the beta density
 * function:
 *
 *
 *                          x
 *            -             -
 *           | (a+b)       | |  a-1      b-1
 * P(x)  =  ----------     |   t    (1-t)    dt
 *           -     -     | |
 *          | (a) | (b)   -
 *                         0
 *
 *
 * This function is identical to the incomplete beta
 * integral function incbet(a, b, x).
 *
 * The complemented function is
 *
 * 1 - P(1-x)  =  incbet( b, a, x );
 *
 *
 * ACCURACY:
 *
 * See incbet.c.
 *
 */

/*							cbrt.c
 *
 *	Cube root
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, cbrt();
 *
 * y = cbrt( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the cube root of the argument, which may be negative.
 *
 * Range reduction involves determining the power of 2 of
 * the argument.  A polynomial of degree 2 applied to the
 * mantissa, and multiplication by the cube root of 1, 2, or 4
 * approximates the root to within about 0.1%.  Then Newton's
 * iteration is used three times to converge to an accurate
 * result.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC        -10,10     200000      1.8e-17     6.2e-18
 *    IEEE       0,1e308     30000      1.5e-16     5.0e-17
 *
 */

/*							chbevl.c
 *
 *	Evaluate Chebyshev series
 *
 *
 *
 * SYNOPSIS:
 *
 * int N;
 * double x, y, coef[N], chebevl();
 *
 * y = chbevl( x, coef, N );
 *
 *
 *
 * DESCRIPTION:
 *
 * Evaluates the series
 *
 *        N-1
 *         - '
 *  y  =   >   coef[i] T (x/2)
 *         -            i
 *        i=0
 *
 * of Chebyshev polynomials Ti at argument x/2.
 *
 * Coefficients are stored in reverse order, i.e. the zero
 * order term is last in the array.  Note N is the number of
 * coefficients, not the order.
 *
 * If coefficients are for the interval a to b, x must
 * have been transformed to x -> 2(2x - b - a)/(b-a) before
 * entering the routine.  This maps x from (a, b) to (-1, 1),
 * over which the Chebyshev polynomials are defined.
 *
 * If the coefficients are for the inverted interval, in
 * which (a, b) is mapped to (1/b, 1/a), the transformation
 * required is x -> 2(2ab/x - b - a)/(b-a).  If b is infinity,
 * this becomes x -> 4a/x - 1.
 *
 *
 *
 * SPEED:
 *
 * Taking advantage of the recurrence properties of the
 * Chebyshev polynomials, the routine requires one more
 * addition per loop than evaluating a nested polynomial of
 * the same degree.
 *
 */

/*							chdtr.c
 *
 *	Chi-square distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * double df, x, y, chdtr();
 *
 * y = chdtr( df, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the area under the left hand tail (from 0 to x)
 * of the Chi square probability density function with
 * v degrees of freedom.
 *
 *
 *                                  inf.
 *                                    -
 *                        1          | |  v/2-1  -t/2
 *  P( x | v )   =   -----------     |   t      e     dt
 *                    v/2  -       | |
 *                   2    | (v/2)   -
 *                                   x
 *
 * where x is the Chi-square variable.
 *
 * The incomplete gamma integral is used, according to the
 * formula
 *
 *	y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
 *
 *
 * The arguments must both be positive.
 *
 *
 *
 * ACCURACY:
 *
 * See igam().
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * chdtr domain   x < 0 or v < 1        0.0
 */
/*							chdtrc()
 *
 *	Complemented Chi-square distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * double v, x, y, chdtrc();
 *
 * y = chdtrc( v, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the area under the right hand tail (from x to
 * infinity) of the Chi square probability density function
 * with v degrees of freedom:
 *
 *
 *                                  inf.
 *                                    -
 *                        1          | |  v/2-1  -t/2
 *  P( x | v )   =   -----------     |   t      e     dt
 *                    v/2  -       | |
 *                   2    | (v/2)   -
 *                                   x
 *
 * where x is the Chi-square variable.
 *
 * The incomplete gamma integral is used, according to the
 * formula
 *
 *	y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
 *
 *
 * The arguments must both be positive.
 *
 *
 *
 * ACCURACY:
 *
 * See igamc().
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * chdtrc domain  x < 0 or v < 1        0.0
 */
/*							chdtri()
 *
 *	Inverse of complemented Chi-square distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * double df, x, y, chdtri();
 *
 * x = chdtri( df, y );
 *
 *
 *
 *
 * DESCRIPTION:
 *
 * Finds the Chi-square argument x such that the integral
 * from x to infinity of the Chi-square density is equal
 * to the given cumulative probability y.
 *
 * This is accomplished using the inverse gamma integral
 * function and the relation
 *
 *    x/2 = igami( df/2, y );
 *
 *
 *
 *
 * ACCURACY:
 *
 * See igami.c.
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * chdtri domain   y < 0 or y > 1        0.0
 *                     v < 1
 *
 */

/*							clog.c
 *
 *	Complex natural logarithm
 *
 *
 *
 * SYNOPSIS:
 *
 * void clog();
 * cmplx z, w;
 *
 * clog( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns complex logarithm to the base e (2.718...) of
 * the complex argument x.
 *
 * If z = x + iy, r = sqrt( x**2 + y**2 ),
 * then
 *       w = log(r) + i arctan(y/x).
 * 
 * The arctangent ranges from -PI to +PI.
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10      7000       8.5e-17     1.9e-17
 *    IEEE      -10,+10     30000       5.0e-15     1.1e-16
 *
 * Larger relative error can be observed for z near 1 +i0.
 * In IEEE arithmetic the peak absolute error is 5.2e-16, rms
 * absolute error 1.0e-16.
 */

/*							cexp()
 *
 *	Complex exponential function
 *
 *
 *
 * SYNOPSIS:
 *
 * void cexp();
 * cmplx z, w;
 *
 * cexp( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the exponential of the complex argument z
 * into the complex result w.
 *
 * If
 *     z = x + iy,
 *     r = exp(x),
 *
 * then
 *
 *     w = r cos y + i r sin y.
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10      8700       3.7e-17     1.1e-17
 *    IEEE      -10,+10     30000       3.0e-16     8.7e-17
 *
 */
/*							csin()
 *
 *	Complex circular sine
 *
 *
 *
 * SYNOPSIS:
 *
 * void csin();
 * cmplx z, w;
 *
 * csin( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 * If
 *     z = x + iy,
 *
 * then
 *
 *     w = sin x  cosh y  +  i cos x sinh y.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10      8400       5.3e-17     1.3e-17
 *    IEEE      -10,+10     30000       3.8e-16     1.0e-16
 * Also tested by csin(casin(z)) = z.
 *
 */
/*							ccos()
 *
 *	Complex circular cosine
 *
 *
 *
 * SYNOPSIS:
 *
 * void ccos();
 * cmplx z, w;
 *
 * ccos( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 * If
 *     z = x + iy,
 *
 * then
 *
 *     w = cos x  cosh y  -  i sin x sinh y.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10      8400       4.5e-17     1.3e-17
 *    IEEE      -10,+10     30000       3.8e-16     1.0e-16
 */
/*							ctan()
 *
 *	Complex circular tangent
 *
 *
 *
 * SYNOPSIS:
 *
 * void ctan();
 * cmplx z, w;
 *
 * ctan( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 * If
 *     z = x + iy,
 *
 * then
 *
 *           sin 2x  +  i sinh 2y
 *     w  =  --------------------.
 *            cos 2x  +  cosh 2y
 *
 * On the real axis the denominator is zero at odd multiples
 * of PI/2.  The denominator is evaluated by its Taylor
 * series near these points.
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10      5200       7.1e-17     1.6e-17
 *    IEEE      -10,+10     30000       7.2e-16     1.2e-16
 * Also tested by ctan * ccot = 1 and catan(ctan(z))  =  z.
 */
/*							ccot()
 *
 *	Complex circular cotangent
 *
 *
 *
 * SYNOPSIS:
 *
 * void ccot();
 * cmplx z, w;
 *
 * ccot( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 * If
 *     z = x + iy,
 *
 * then
 *
 *           sin 2x  -  i sinh 2y
 *     w  =  --------------------.
 *            cosh 2y  -  cos 2x
 *
 * On the real axis, the denominator has zeros at even
 * multiples of PI/2.  Near these points it is evaluated
 * by a Taylor series.
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10      3000       6.5e-17     1.6e-17
 *    IEEE      -10,+10     30000       9.2e-16     1.2e-16
 * Also tested by ctan * ccot = 1 + i0.
 */
/*							casin()
 *
 *	Complex circular arc sine
 *
 *
 *
 * SYNOPSIS:
 *
 * void casin();
 * cmplx z, w;
 *
 * casin( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 * Inverse complex sine:
 *
 *                               2
 * w = -i clog( iz + csqrt( 1 - z ) ).
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10     10100       2.1e-15     3.4e-16
 *    IEEE      -10,+10     30000       2.2e-14     2.7e-15
 * Larger relative error can be observed for z near zero.
 * Also tested by csin(casin(z)) = z.
 */

/*							cacos()
 *
 *	Complex circular arc cosine
 *
 *
 *
 * SYNOPSIS:
 *
 * void cacos();
 * cmplx z, w;
 *
 * cacos( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 *
 * w = arccos z  =  PI/2 - arcsin z.
 *
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10      5200      1.6e-15      2.8e-16
 *    IEEE      -10,+10     30000      1.8e-14      2.2e-15
 */
/*							catan()
 *
 *	Complex circular arc tangent
 *
 *
 *
 * SYNOPSIS:
 *
 * void catan();
 * cmplx z, w;
 *
 * catan( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 * If
 *     z = x + iy,
 *
 * then
 *          1       (    2x     )
 * Re w  =  - arctan(-----------)  +  k PI
 *          2       (     2    2)
 *                  (1 - x  - y )
 *
 *               ( 2         2)
 *          1    (x  +  (y+1) )
 * Im w  =  - log(------------)
 *          4    ( 2         2)
 *               (x  +  (y-1) )
 *
 * Where k is an arbitrary integer.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10      5900       1.3e-16     7.8e-18
 *    IEEE      -10,+10     30000       2.3e-15     8.5e-17
 * The check catan( ctan(z) )  =  z, with |x| and |y| < PI/2,
 * had peak relative error 1.5e-16, rms relative error
 * 2.9e-17.  See also clog().
 */

/*							cmplx.c
 *
 *	Complex number arithmetic
 *
 *
 *
 * SYNOPSIS:
 *
 * typedef struct {
 *      double r;     real part
 *      double i;     imaginary part
 *     }cmplx;
 *
 * cmplx *a, *b, *c;
 *
 * cadd( a, b, c );     c = b + a
 * csub( a, b, c );     c = b - a
 * cmul( a, b, c );     c = b * a
 * cdiv( a, b, c );     c = b / a
 * cneg( c );           c = -c
 * cmov( b, c );        c = b
 *
 *
 *
 * DESCRIPTION:
 *
 * Addition:
 *    c.r  =  b.r + a.r
 *    c.i  =  b.i + a.i
 *
 * Subtraction:
 *    c.r  =  b.r - a.r
 *    c.i  =  b.i - a.i
 *
 * Multiplication:
 *    c.r  =  b.r * a.r  -  b.i * a.i
 *    c.i  =  b.r * a.i  +  b.i * a.r
 *
 * Division:
 *    d    =  a.r * a.r  +  a.i * a.i
 *    c.r  = (b.r * a.r  + b.i * a.i)/d
 *    c.i  = (b.i * a.r  -  b.r * a.i)/d
 * ACCURACY:
 *
 * In DEC arithmetic, the test (1/z) * z = 1 had peak relative
 * error 3.1e-17, rms 1.2e-17.  The test (y/z) * (z/y) = 1 had
 * peak relative error 8.3e-17, rms 2.1e-17.
 *
 * Tests in the rectangle {-10,+10}:
 *                      Relative error:
 * arithmetic   function  # trials      peak         rms
 *    DEC        cadd       10000       1.4e-17     3.4e-18
 *    IEEE       cadd      100000       1.1e-16     2.7e-17
 *    DEC        csub       10000       1.4e-17     4.5e-18
 *    IEEE       csub      100000       1.1e-16     3.4e-17
 *    DEC        cmul        3000       2.3e-17     8.7e-18
 *    IEEE       cmul      100000       2.1e-16     6.9e-17
 *    DEC        cdiv       18000       4.9e-17     1.3e-17
 *    IEEE       cdiv      100000       3.7e-16     1.1e-16
 */

/*							cabs()
 *
 *	Complex absolute value
 *
 *
 *
 * SYNOPSIS:
 *
 * double cabs();
 * cmplx z;
 * double a;
 *
 * a = cabs( &z );
 *
 *
 *
 * DESCRIPTION:
 *
 *
 * If z = x + iy
 *
 * then
 *
 *       a = sqrt( x**2 + y**2 ).
 * 
 * Overflow and underflow are avoided by testing the magnitudes
 * of x and y before squaring.  If either is outside half of
 * the floating point full scale range, both are rescaled.
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -30,+30     30000       3.2e-17     9.2e-18
 *    IEEE      -10,+10    100000       2.7e-16     6.9e-17
 */
/*							csqrt()
 *
 *	Complex square root
 *
 *
 *
 * SYNOPSIS:
 *
 * void csqrt();
 * cmplx z, w;
 *
 * csqrt( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 *
 * If z = x + iy,  r = |z|, then
 *
 *                       1/2
 * Im w  =  [ (r - x)/2 ]   ,
 *
 * Re w  =  y / 2 Im w.
 *
 *
 * Note that -w is also a square root of z.  The root chosen
 * is always in the upper half plane.
 *
 * Because of the potential for cancellation error in r - x,
 * the result is sharpened by doing a Heron iteration
 * (see sqrt.c) in complex arithmetic.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10     25000       3.2e-17     9.6e-18
 *    IEEE      -10,+10    100000       3.2e-16     7.7e-17
 *
 *                        2
 * Also tested by csqrt( z ) = z, and tested by arguments
 * close to the real axis.
 */

/*							const.c
 *
 *	Globally declared constants
 *
 *
 *
 * SYNOPSIS:
 *
 * extern double nameofconstant;
 *
 *
 *
 *
 * DESCRIPTION:
 *
 * This file contains a number of mathematical constants and
 * also some needed size parameters of the computer arithmetic.
 * The values are supplied as arrays of hexadecimal integers
 * for IEEE arithmetic; arrays of octal constants for DEC
 * arithmetic; and in a normal decimal scientific notation for
 * other machines.  The particular notation used is determined
 * by a symbol (DEC, IBMPC, or UNK) defined in the include file
 * math.h.
 *
 * The default size parameters are as follows.
 *
 * For DEC and UNK modes:
 * MACHEP =  1.38777878078144567553E-17       2**-56
 * MAXLOG =  8.8029691931113054295988E1       log(2**127)
 * MINLOG = -8.872283911167299960540E1        log(2**-128)
 * MAXNUM =  1.701411834604692317316873e38    2**127
 *
 * For IEEE arithmetic (IBMPC):
 * MACHEP =  1.11022302462515654042E-16       2**-53
 * MAXLOG =  7.09782712893383996843E2         log(2**1024)
 * MINLOG = -7.08396418532264106224E2         log(2**-1022)
 * MAXNUM =  1.7976931348623158E308           2**1024
 *
 * The global symbols for mathematical constants are
 * PI     =  3.14159265358979323846           pi
 * PIO2   =  1.57079632679489661923           pi/2
 * PIO4   =  7.85398163397448309616E-1        pi/4
 * SQRT2  =  1.41421356237309504880           sqrt(2)
 * SQRTH  =  7.07106781186547524401E-1        sqrt(2)/2
 * LOG2E  =  1.4426950408889634073599         1/log(2)
 * SQ2OPI =  7.9788456080286535587989E-1      sqrt( 2/pi )
 * LOGE2  =  6.93147180559945309417E-1        log(2)
 * LOGSQ2 =  3.46573590279972654709E-1        log(2)/2
 * THPIO4 =  2.35619449019234492885           3*pi/4
 * TWOOPI =  6.36619772367581343075535E-1     2/pi
 *
 * These lists are subject to change.
 */

/*							cosh.c
 *
 *	Hyperbolic cosine
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, cosh();
 *
 * y = cosh( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns hyperbolic cosine of argument in the range MINLOG to
 * MAXLOG.
 *
 * cosh(x)  =  ( exp(x) + exp(-x) )/2.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       +- 88       50000       4.0e-17     7.7e-18
 *    IEEE     +-MAXLOG     30000       2.6e-16     5.7e-17
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * cosh overflow    |x| > MAXLOG       MAXNUM
 *
 *
 */

/*							cpmul.c
 *
 *	Multiply two polynomials with complex coefficients
 *
 *
 *
 * SYNOPSIS:
 *
 * typedef struct
 *		{
 *		double r;
 *		double i;
 *		}cmplx;
 *
 * cmplx a[], b[], c[];
 * int da, db, dc;
 *
 * cpmul( a, da, b, db, c, &dc );
 *
 *
 *
 * DESCRIPTION:
 *
 * The two argument polynomials are multiplied together, and
 * their product is placed in c.
 *
 * Each polynomial is represented by its coefficients stored
 * as an array of complex number structures (see the typedef).
 * The degree of a is da, which must be passed to the routine
 * as an argument; similarly the degree db of b is an argument.
 * Array a has da + 1 elements and array b has db + 1 elements.
 * Array c must have storage allocated for at least da + db + 1
 * elements.  The value da + db is returned in dc; this is
 * the degree of the product polynomial.
 *
 * Polynomial coefficients are stored in ascending order; i.e.,
 * a(x) = a[0]*x**0 + a[1]*x**1 + ... + a[da]*x**da.
 *
 *
 * If desired, c may be the same as either a or b, in which
 * case the input argument array is replaced by the product
 * array (but only up to terms of degree da + db).
 *
 */

/*							dawsn.c
 *
 *	Dawson's Integral
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, dawsn();
 *
 * y = dawsn( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Approximates the integral
 *
 *                             x
 *                             -
 *                      2     | |        2
 *  dawsn(x)  =  exp( -x  )   |    exp( t  ) dt
 *                          | |
 *                           -
 *                           0
 *
 * Three different rational approximations are employed, for
 * the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up.
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0,10        10000       6.9e-16     1.0e-16
 *    DEC       0,10         6000       7.4e-17     1.4e-17
 *
 *
 */

/*							drand.c
 *
 *	Pseudorandom number generator
 *
 *
 *
 * SYNOPSIS:
 *
 * double y, drand();
 *
 * drand( &y );
 *
 *
 *
 * DESCRIPTION:
 *
 * Yields a random number 1.0 <= y < 2.0.
 *
 * The three-generator congruential algorithm by Brian
 * Wichmann and David Hill (BYTE magazine, March, 1987,
 * pp 127-8) is used. The period, given by them, is
 * 6953607871644.
 *
 * Versions invoked by the different arithmetic compile
 * time options DEC, IBMPC, and MIEEE, produce
 * approximately the same sequences, differing only in the
 * least significant bits of the numbers. The UNK option
 * implements the algorithm as recommended in the BYTE
 * article.  It may be used on all computers. However,
 * the low order bits of a double precision number may
 * not be adequately random, and may vary due to arithmetic
 * implementation details on different computers.
 *
 * The other compile options generate an additional random
 * integer that overwrites the low order bits of the double
 * precision number.  This reduces the period by a factor of
 * two but tends to overcome the problems mentioned.
 *
 */

/*							eigens.c
 *
 *	Eigenvalues and eigenvectors of a real symmetric matrix
 *
 *
 *
 * SYNOPSIS:
 *
 * int n;
 * double A[n*(n+1)/2], EV[n*n], E[n];
 * void eigens( A, EV, E, n );
 *
 *
 *
 * DESCRIPTION:
 *
 * The algorithm is due to J. vonNeumann.
 *
 * A[] is a symmetric matrix stored in lower triangular form.
 * That is, A[ row, column ] = A[ (row*row+row)/2 + column ]
 * or equivalently with row and column interchanged.  The
 * indices row and column run from 0 through n-1.
 *
 * EV[] is the output matrix of eigenvectors stored columnwise.
 * That is, the elements of each eigenvector appear in sequential
 * memory order.  The jth element of the ith eigenvector is
 * EV[ n*i+j ] = EV[i][j].
 *
 * E[] is the output matrix of eigenvalues.  The ith element
 * of E corresponds to the ith eigenvector (the ith row of EV).
 *
 * On output, the matrix A will have been diagonalized and its
 * orginal contents are destroyed.
 *
 * ACCURACY:
 *
 * The error is controlled by an internal parameter called RANGE
 * which is set to 1e-10.  After diagonalization, the
 * off-diagonal elements of A will have been reduced by
 * this factor.
 *
 * ERROR MESSAGES:
 *
 * None.
 *
 */

/*							ellie.c
 *
 *	Incomplete elliptic integral of the second kind
 *
 *
 *
 * SYNOPSIS:
 *
 * double phi, m, y, ellie();
 *
 * y = ellie( phi, m );
 *
 *
 *
 * DESCRIPTION:
 *
 * Approximates the integral
 *
 *
 *                phi
 *                 -
 *                | |
 *                |                   2
 * E(phi_\m)  =    |    sqrt( 1 - m sin t ) dt
 *                |
 *              | |    
 *               -
 *                0
 *
 * of amplitude phi and modulus m, using the arithmetic -
 * geometric mean algorithm.
 *
 *
 *
 * ACCURACY:
 *
 * Tested at random arguments with phi in [-10, 10] and m in
 * [0, 1].
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC        0,2         2000       1.9e-16     3.4e-17
 *    IEEE     -10,10      150000       3.3e-15     1.4e-16
 *
 *
 */

/*							ellik.c
 *
 *	Incomplete elliptic integral of the first kind
 *
 *
 *
 * SYNOPSIS:
 *
 * double phi, m, y, ellik();
 *
 * y = ellik( phi, m );
 *
 *
 *
 * DESCRIPTION:
 *
 * Approximates the integral
 *
 *
 *
 *                phi
 *                 -
 *                | |
 *                |           dt
 * F(phi_\m)  =    |    ------------------
 *                |                   2
 *              | |    sqrt( 1 - m sin t )
 *               -
 *                0
 *
 * of amplitude phi and modulus m, using the arithmetic -
 * geometric mean algorithm.
 *
 *
 *
 *
 * ACCURACY:
 *
 * Tested at random points with m in [0, 1] and phi as indicated.
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE     -10,10       200000      7.4e-16     1.0e-16
 *
 *
 */

/*							ellpe.c
 *
 *	Complete elliptic integral of the second kind
 *
 *
 *
 * SYNOPSIS:
 *
 * double m1, y, ellpe();
 *
 * y = ellpe( m1 );
 *
 *
 *
 * DESCRIPTION:
 *
 * Approximates the integral
 *
 *
 *            pi/2
 *             -
 *            | |                 2
 * E(m)  =    |    sqrt( 1 - m sin t ) dt
 *          | |    
 *           -
 *            0
 *
 * Where m = 1 - m1, using the approximation
 *
 *      P(x)  -  x log x Q(x).
 *
 * Though there are no singularities, the argument m1 is used
 * rather than m for compatibility with ellpk().
 *
 * E(1) = 1; E(0) = pi/2.
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC        0, 1       13000       3.1e-17     9.4e-18
 *    IEEE       0, 1       10000       2.1e-16     7.3e-17
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * ellpe domain      x<0, x>1            0.0
 *
 */

/*							ellpj.c
 *
 *	Jacobian Elliptic Functions
 *
 *
 *
 * SYNOPSIS:
 *
 * double u, m, sn, cn, dn, phi;
 * int ellpj();
 *
 * ellpj( u, m, _&sn, _&cn, _&dn, _&phi );
 *
 *
 *
 * DESCRIPTION:
 *
 *
 * Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
 * and dn(u|m) of parameter m between 0 and 1, and real
 * argument u.
 *
 * These functions are periodic, with quarter-period on the
 * real axis equal to the complete elliptic integral
 * ellpk(1.0-m).
 *
 * Relation to incomplete elliptic integral:
 * If u = ellik(phi,m), then sn(u|m) = sin(phi),
 * and cn(u|m) = cos(phi).  Phi is called the amplitude of u.
 *
 * Computation is by means of the arithmetic-geometric mean
 * algorithm, except when m is within 1e-9 of 0 or 1.  In the
 * latter case with m close to 1, the approximation applies
 * only for phi < pi/2.
 *
 * ACCURACY:
 *
 * Tested at random points with u between 0 and 10, m between
 * 0 and 1.
 *
 *            Absolute error (* = relative error):
 * arithmetic   function   # trials      peak         rms
 *    DEC       sn           1800       4.5e-16     8.7e-17
 *    IEEE      phi         10000       9.2e-16*    1.4e-16*
 *    IEEE      sn          50000       4.1e-15     4.6e-16
 *    IEEE      cn          40000       3.6e-15     4.4e-16
 *    IEEE      dn          10000       1.3e-12     1.8e-14
 *
 *  Peak error observed in consistency check using addition
 * theorem for sn(u+v) was 4e-16 (absolute).  Also tested by
 * the above relation to the incomplete elliptic integral.
 * Accuracy deteriorates when u is large.
 *
 */

/*							ellpk.c
 *
 *	Complete elliptic integral of the first kind
 *
 *
 *
 * SYNOPSIS:
 *
 * double m1, y, ellpk();
 *
 * y = ellpk( m1 );
 *
 *
 *
 * DESCRIPTION:
 *
 * Approximates the integral
 *
 *
 *
 *            pi/2
 *             -
 *            | |
 *            |           dt
 * K(m)  =    |    ------------------
 *            |                   2
 *          | |    sqrt( 1 - m sin t )
 *           -
 *            0
 *
 * where m = 1 - m1, using the approximation
 *
 *     P(x)  -  log x Q(x).
 *
 * The argument m1 is used rather than m so that the logarithmic
 * singularity at m = 1 will be shifted to the origin; this
 * preserves maximum accuracy.
 *
 * K(0) = pi/2.
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC        0,1        16000       3.5e-17     1.1e-17
 *    IEEE       0,1        30000       2.5e-16     6.8e-17
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * ellpk domain       x<0, x>1           0.0
 *
 */

/*							euclid.c
 *
 *	Rational arithmetic routines
 *
 *
 *
 * SYNOPSIS:
 *
 * 
 * typedef struct
 *      {
 *      double n;  numerator
 *      double d;  denominator
 *      }fract;
 *
 * radd( a, b, c )      c = b + a
 * rsub( a, b, c )      c = b - a
 * rmul( a, b, c )      c = b * a
 * rdiv( a, b, c )      c = b / a
 * euclid( &n, &d )     Reduce n/d to lowest terms,
 *                      return greatest common divisor.
 *
 * Arguments of the routines are pointers to the structures.
 * The double precision numbers are assumed, without checking,
 * to be integer valued.  Overflow conditions are reported.
 */
 
/*							exp.c
 *
 *	Exponential function
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, exp();
 *
 * y = exp( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns e (2.71828...) raised to the x power.
 *
 * Range reduction is accomplished by separating the argument
 * into an integer k and fraction f such that
 *
 *     x    k  f
 *    e  = 2  e.
 *
 * A Pade' form  1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
 * of degree 2/3 is used to approximate exp(f) in the basic
 * interval [-0.5, 0.5].
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       +- 88       50000       2.8e-17     7.0e-18
 *    IEEE      +- 708      40000       2.0e-16     5.6e-17
 *
 *
 * Error amplification in the exponential function can be
 * a serious matter.  The error propagation involves
 * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
 * which shows that a 1 lsb error in representing X produces
 * a relative error of X times 1 lsb in the function.
 * While the routine gives an accurate result for arguments
 * that are exactly represented by a double precision
 * computer number, the result contains amplified roundoff
 * error for large arguments not exactly represented.
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * exp underflow    x < MINLOG         0.0
 * exp overflow     x > MAXLOG         INFINITY
 *
 */

/*							exp10.c
 *
 *	Base 10 exponential function
 *      (Common antilogarithm)
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, exp10();
 *
 * y = exp10( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns 10 raised to the x power.
 *
 * Range reduction is accomplished by expressing the argument
 * as 10**x = 2**n 10**f, with |f| < 0.5 log10(2).
 * The Pade' form
 *
 *    1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
 *
 * is used to approximate 10**f.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE     -307,+307    30000       2.2e-16     5.5e-17
 * Test result from an earlier version (2.1):
 *    DEC       -38,+38     70000       3.1e-17     7.0e-18
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * exp10 underflow    x < -MAXL10        0.0
 * exp10 overflow     x > MAXL10       MAXNUM
 *
 * DEC arithmetic: MAXL10 = 38.230809449325611792.
 * IEEE arithmetic: MAXL10 = 308.2547155599167.
 *
 */

/*							exp2.c
 *
 *	Base 2 exponential function
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, exp2();
 *
 * y = exp2( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns 2 raised to the x power.
 *
 * Range reduction is accomplished by separating the argument
 * into an integer k and fraction f such that
 *     x    k  f
 *    2  = 2  2.
 *
 * A Pade' form
 *
 *   1 + 2x P(x**2) / (Q(x**2) - x P(x**2) )
 *
 * approximates 2**x in the basic range [-0.5, 0.5].
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE    -1022,+1024   30000       1.8e-16     5.4e-17
 *
 *
 * See exp.c for comments on error amplification.
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * exp underflow    x < -MAXL2        0.0
 * exp overflow     x > MAXL2         MAXNUM
 *
 * For DEC arithmetic, MAXL2 = 127.
 * For IEEE arithmetic, MAXL2 = 1024.
 */

/*							expn.c
 *
 *		Exponential integral En
 *
 *
 *
 * SYNOPSIS:
 *
 * int n;
 * double x, y, expn();
 *
 * y = expn( n, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Evaluates the exponential integral
 *
 *                 inf.
 *                   -
 *                  | |   -xt
 *                  |    e
 *      E (x)  =    |    ----  dt.
 *       n          |      n
 *                | |     t
 *                 -
 *                  1
 *
 *
 * Both n and x must be nonnegative.
 *
 * The routine employs either a power series, a continued
 * fraction, or an asymptotic formula depending on the
 * relative values of n and x.
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       0, 30        5000       2.0e-16     4.6e-17
 *    IEEE      0, 30       10000       1.7e-15     3.6e-16
 *
 */

/*							fabs.c
 *
 *		Absolute value
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y;
 *
 * y = fabs( x );
 *
 *
 *
 * DESCRIPTION:
 * 
 * Returns the absolute value of the argument.
 *
 */

/*							fac.c
 *
 *	Factorial function
 *
 *
 *
 * SYNOPSIS:
 *
 * double y, fac();
 * int i;
 *
 * y = fac( i );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns factorial of i  =  1 * 2 * 3 * ... * i.
 * fac(0) = 1.0.
 *
 * Due to machine arithmetic bounds the largest value of
 * i accepted is 33 in DEC arithmetic or 170 in IEEE
 * arithmetic.  Greater values, or negative ones,
 * produce an error message and return MAXNUM.
 *
 *
 *
 * ACCURACY:
 *
 * For i < 34 the values are simply tabulated, and have
 * full machine accuracy.  If i > 55, fac(i) = gamma(i+1);
 * see gamma.c.
 *
 *                      Relative error:
 * arithmetic   domain      peak
 *    IEEE      0, 170    1.4e-15
 *    DEC       0, 33      1.4e-17
 *
 */

/*							fdtr.c
 *
 *	F distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int df1, df2;
 * double x, y, fdtr();
 *
 * y = fdtr( df1, df2, x );
 *
 * DESCRIPTION:
 *
 * Returns the area from zero to x under the F density
 * function (also known as Snedcor's density or the
 * variance ratio density).  This is the density
 * of x = (u1/df1)/(u2/df2), where u1 and u2 are random
 * variables having Chi square distributions with df1
 * and df2 degrees of freedom, respectively.
 *
 * The incomplete beta integral is used, according to the
 * formula
 *
 *	P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
 *
 *
 * The arguments a and b are greater than zero, and x is
 * nonnegative.
 *
 * ACCURACY:
 *
 * Tested at random points (a,b,x).
 *
 *                x     a,b                     Relative error:
 * arithmetic  domain  domain     # trials      peak         rms
 *    IEEE      0,1    0,100       100000      9.8e-15     1.7e-15
 *    IEEE      1,5    0,100       100000      6.5e-15     3.5e-16
 *    IEEE      0,1    1,10000     100000      2.2e-11     3.3e-12
 *    IEEE      1,5    1,10000     100000      1.1e-11     1.7e-13
 * See also incbet.c.
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * fdtr domain     a<0, b<0, x<0         0.0
 *
 */
/*							fdtrc()
 *
 *	Complemented F distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int df1, df2;
 * double x, y, fdtrc();
 *
 * y = fdtrc( df1, df2, x );
 *
 * DESCRIPTION:
 *
 * Returns the area from x to infinity under the F density
 * function (also known as Snedcor's density or the
 * variance ratio density).
 *
 *
 *                      inf.
 *                       -
 *              1       | |  a-1      b-1
 * 1-P(x)  =  ------    |   t    (1-t)    dt
 *            B(a,b)  | |
 *                     -
 *                      x
 *
 *
 * The incomplete beta integral is used, according to the
 * formula
 *
 *	P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
 *
 *
 * ACCURACY:
 *
 * Tested at random points (a,b,x) in the indicated intervals.
 *                x     a,b                     Relative error:
 * arithmetic  domain  domain     # trials      peak         rms
 *    IEEE      0,1    1,100       100000      3.7e-14     5.9e-16
 *    IEEE      1,5    1,100       100000      8.0e-15     1.6e-15
 *    IEEE      0,1    1,10000     100000      1.8e-11     3.5e-13
 *    IEEE      1,5    1,10000     100000      2.0e-11     3.0e-12
 * See also incbet.c.
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * fdtrc domain    a<0, b<0, x<0         0.0
 *
 */
/*							fdtri()
 *
 *	Inverse of complemented F distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int df1, df2;
 * double x, p, fdtri();
 *
 * x = fdtri( df1, df2, p );
 *
 * DESCRIPTION:
 *
 * Finds the F density argument x such that the integral
 * from x to infinity of the F density is equal to the
 * given probability p.
 *
 * This is accomplished using the inverse beta integral
 * function and the relations
 *
 *      z = incbi( df2/2, df1/2, p )
 *      x = df2 (1-z) / (df1 z).
 *
 * Note: the following relations hold for the inverse of
 * the uncomplemented F distribution:
 *
 *      z = incbi( df1/2, df2/2, p )
 *      x = df2 z / (df1 (1-z)).
 *
 * ACCURACY:
 *
 * Tested at random points (a,b,p).
 *
 *              a,b                     Relative error:
 * arithmetic  domain     # trials      peak         rms
 *  For p between .001 and 1:
 *    IEEE     1,100       100000      8.3e-15     4.7e-16
 *    IEEE     1,10000     100000      2.1e-11     1.4e-13
 *  For p between 10^-6 and 10^-3:
 *    IEEE     1,100        50000      1.3e-12     8.4e-15
 *    IEEE     1,10000      50000      3.0e-12     4.8e-14
 * See also fdtrc.c.
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * fdtri domain   p <= 0 or p > 1       0.0
 *                     v < 1
 *
 */

/*							fftr.c
 *
 *	FFT of Real Valued Sequence
 *
 *
 *
 * SYNOPSIS:
 *
 * double x[], sine[];
 * int m;
 *
 * fftr( x, m, sine );
 *
 *
 *
 * DESCRIPTION:
 *
 * Computes the (complex valued) discrete Fourier transform of
 * the real valued sequence x[].  The input sequence x[] contains
 * n = 2**m samples.  The program fills array sine[k] with
 * n/4 + 1 values of sin( 2 PI k / n ).
 *
 * Data format for complex valued output is real part followed
 * by imaginary part.  The output is developed in the input
 * array x[].
 *
 * The algorithm takes advantage of the fact that the FFT of an
 * n point real sequence can be obtained from an n/2 point
 * complex FFT.
 *
 * A radix 2 FFT algorithm is used.
 *
 * Execution time on an LSI-11/23 with floating point chip
 * is 1.0 sec for n = 256.
 *
 *
 *
 * REFERENCE:
 *
 * E. Oran Brigham, The Fast Fourier Transform;
 * Prentice-Hall, Inc., 1974
 *
 */

/*							ceil()
 *							floor()
 *							frexp()
 *							ldexp()
 *							signbit()
 *							isnan()
 *							isfinite()
 *
 *	Floating point numeric utilities
 *
 *
 *
 * SYNOPSIS:
 *
 * double ceil(), floor(), frexp(), ldexp();
 * int signbit(), isnan(), isfinite();
 * double x, y;
 * int expnt, n;
 *
 * y = floor(x);
 * y = ceil(x);
 * y = frexp( x, &expnt );
 * y = ldexp( x, n );
 * n = signbit(x);
 * n = isnan(x);
 * n = isfinite(x);
 *
 *
 *
 * DESCRIPTION:
 *
 * All four routines return a double precision floating point
 * result.
 *
 * floor() returns the largest integer less than or equal to x.
 * It truncates toward minus infinity.
 *
 * ceil() returns the smallest integer greater than or equal
 * to x.  It truncates toward plus infinity.
 *
 * frexp() extracts the exponent from x.  It returns an integer
 * power of two to expnt and the significand between 0.5 and 1
 * to y.  Thus  x = y * 2**expn.
 *
 * ldexp() multiplies x by 2**n.
 *
 * signbit(x) returns 1 if the sign bit of x is 1, else 0.
 *
 * These functions are part of the standard C run time library
 * for many but not all C compilers.  The ones supplied are
 * written in C for either DEC or IEEE arithmetic.  They should
 * be used only if your compiler library does not already have
 * them.
 *
 * The IEEE versions assume that denormal numbers are implemented
 * in the arithmetic.  Some modifications will be required if
 * the arithmetic has abrupt rather than gradual underflow.
 */

/*							fresnl.c
 *
 *	Fresnel integral
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, S, C;
 * void fresnl();
 *
 * fresnl( x, _&S, _&C );
 *
 *
 * DESCRIPTION:
 *
 * Evaluates the Fresnel integrals
 *
 *           x
 *           -
 *          | |
 * C(x) =   |   cos(pi/2 t**2) dt,
 *        | |
 *         -
 *          0
 *
 *           x
 *           -
 *          | |
 * S(x) =   |   sin(pi/2 t**2) dt.
 *        | |
 *         -
 *          0
 *
 *
 * The integrals are evaluated by a power series for x < 1.
 * For x >= 1 auxiliary functions f(x) and g(x) are employed
 * such that
 *
 * C(x) = 0.5 + f(x) sin( pi/2 x**2 ) - g(x) cos( pi/2 x**2 )
 * S(x) = 0.5 - f(x) cos( pi/2 x**2 ) - g(x) sin( pi/2 x**2 )
 *
 *
 *
 * ACCURACY:
 *
 *  Relative error.
 *
 * Arithmetic  function   domain     # trials      peak         rms
 *   IEEE       S(x)      0, 10       10000       2.0e-15     3.2e-16
 *   IEEE       C(x)      0, 10       10000       1.8e-15     3.3e-16
 *   DEC        S(x)      0, 10        6000       2.2e-16     3.9e-17
 *   DEC        C(x)      0, 10        5000       2.3e-16     3.9e-17
 */

/*							gamma.c
 *
 *	Gamma function
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, gamma();
 * extern int sgngam;
 *
 * y = gamma( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns gamma function of the argument.  The result is
 * correctly signed, and the sign (+1 or -1) is also
 * returned in a global (extern) variable named sgngam.
 * This variable is also filled in by the logarithmic gamma
 * function lgam().
 *
 * Arguments |x| <= 34 are reduced by recurrence and the function
 * approximated by a rational function of degree 6/7 in the
 * interval (2,3).  Large arguments are handled by Stirling's
 * formula. Large negative arguments are made positive using
 * a reflection formula.  
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC      -34, 34      10000       1.3e-16     2.5e-17
 *    IEEE    -170,-33      20000       2.3e-15     3.3e-16
 *    IEEE     -33,  33     20000       9.4e-16     2.2e-16
 *    IEEE      33, 171.6   20000       2.3e-15     3.2e-16
 *
 * Error for arguments outside the test range will be larger
 * owing to error amplification by the exponential function.
 *
 */
/*							lgam()
 *
 *	Natural logarithm of gamma function
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, lgam();
 * extern int sgngam;
 *
 * y = lgam( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the base e (2.718...) logarithm of the absolute
 * value of the gamma function of the argument.
 * The sign (+1 or -1) of the gamma function is returned in a
 * global (extern) variable named sgngam.
 *
 * For arguments greater than 13, the logarithm of the gamma
 * function is approximated by the logarithmic version of
 * Stirling's formula using a polynomial approximation of
 * degree 4. Arguments between -33 and +33 are reduced by
 * recurrence to the interval [2,3] of a rational approximation.
 * The cosecant reflection formula is employed for arguments
 * less than -33.
 *
 * Arguments greater than MAXLGM return MAXNUM and an error
 * message.  MAXLGM = 2.035093e36 for DEC
 * arithmetic or 2.556348e305 for IEEE arithmetic.
 *
 *
 *
 * ACCURACY:
 *
 *
 * arithmetic      domain        # trials     peak         rms
 *    DEC     0, 3                  7000     5.2e-17     1.3e-17
 *    DEC     2.718, 2.035e36       5000     3.9e-17     9.9e-18
 *    IEEE    0, 3                 28000     5.4e-16     1.1e-16
 *    IEEE    2.718, 2.556e305     40000     3.5e-16     8.3e-17
 * The error criterion was relative when the function magnitude
 * was greater than one but absolute when it was less than one.
 *
 * The following test used the relative error criterion, though
 * at certain points the relative error could be much higher than
 * indicated.
 *    IEEE    -200, -4             10000     4.8e-16     1.3e-16
 *
 */

/*							gdtr.c
 *
 *	Gamma distribution function
 *
 *
 *
 * SYNOPSIS:
 *
 * double a, b, x, y, gdtr();
 *
 * y = gdtr( a, b, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the integral from zero to x of the gamma probability
 * density function:
 *
 *
 *                x
 *        b       -
 *       a       | |   b-1  -at
 * y =  -----    |    t    e    dt
 *       -     | |
 *      | (b)   -
 *               0
 *
 *  The incomplete gamma integral is used, according to the
 * relation
 *
 * y = igam( b, ax ).
 *
 *
 * ACCURACY:
 *
 * See igam().
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * gdtr domain         x < 0            0.0
 *
 */
/*							gdtrc.c
 *
 *	Complemented gamma distribution function
 *
 *
 *
 * SYNOPSIS:
 *
 * double a, b, x, y, gdtrc();
 *
 * y = gdtrc( a, b, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the integral from x to infinity of the gamma
 * probability density function:
 *
 *
 *               inf.
 *        b       -
 *       a       | |   b-1  -at
 * y =  -----    |    t    e    dt
 *       -     | |
 *      | (b)   -
 *               x
 *
 *  The incomplete gamma integral is used, according to the
 * relation
 *
 * y = igamc( b, ax ).
 *
 *
 * ACCURACY:
 *
 * See igamc().
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * gdtrc domain         x < 0            0.0
 *
 */

/*
C
C     ..................................................................
C
C        SUBROUTINE GELS
C
C        PURPOSE
C           TO SOLVE A SYSTEM OF SIMULTANEOUS LINEAR EQUATIONS WITH
C           SYMMETRIC COEFFICIENT MATRIX UPPER TRIANGULAR PART OF WHICH
C           IS ASSUMED TO BE STORED COLUMNWISE.
C
C        USAGE
C           CALL GELS(R,A,M,N,EPS,IER,AUX)
C
C        DESCRIPTION OF PARAMETERS
C           R      - M BY N RIGHT HAND SIDE MATRIX.  (DESTROYED)
C                    ON RETURN R CONTAINS THE SOLUTION OF THE EQUATIONS.
C           A      - UPPER TRIANGULAR PART OF THE SYMMETRIC
C                    M BY M COEFFICIENT MATRIX.  (DESTROYED)
C           M      - THE NUMBER OF EQUATIONS IN THE SYSTEM.
C           N      - THE NUMBER OF RIGHT HAND SIDE VECTORS.
C           EPS    - AN INPUT CONSTANT WHICH IS USED AS RELATIVE
C                    TOLERANCE FOR TEST ON LOSS OF SIGNIFICANCE.
C           IER    - RESULTING ERROR PARAMETER CODED AS FOLLOWS
C                    IER=0  - NO ERROR,
C                    IER=-1 - NO RESULT BECAUSE OF M LESS THAN 1 OR
C                             PIVOT ELEMENT AT ANY ELIMINATION STEP
C                             EQUAL TO 0,
C                    IER=K  - WARNING DUE TO POSSIBLE LOSS OF SIGNIFI-
C                             CANCE INDICATED AT ELIMINATION STEP K+1,
C                             WHERE PIVOT ELEMENT WAS LESS THAN OR
C                             EQUAL TO THE INTERNAL TOLERANCE EPS TIMES
C                             ABSOLUTELY GREATEST MAIN DIAGONAL
C                             ELEMENT OF MATRIX A.
C           AUX    - AN AUXILIARY STORAGE ARRAY WITH DIMENSION M-1.
C
C        REMARKS
C           UPPER TRIANGULAR PART OF MATRIX A IS ASSUMED TO BE STORED
C           COLUMNWISE IN M*(M+1)/2 SUCCESSIVE STORAGE LOCATIONS, RIGHT
C           HAND SIDE MATRIX R COLUMNWISE IN N*M SUCCESSIVE STORAGE
C           LOCATIONS. ON RETURN SOLUTION MATRIX R IS STORED COLUMNWISE
C           TOO.
C           THE PROCEDURE GIVES RESULTS IF THE NUMBER OF EQUATIONS M IS
C           GREATER THAN 0 AND PIVOT ELEMENTS AT ALL ELIMINATION STEPS
C           ARE DIFFERENT FROM 0. HOWEVER WARNING IER=K - IF GIVEN -
C           INDICATES POSSIBLE LOSS OF SIGNIFICANCE. IN CASE OF A WELL
C           SCALED MATRIX A AND APPROPRIATE TOLERANCE EPS, IER=K MAY BE
C           INTERPRETED THAT MATRIX A HAS THE RANK K. NO WARNING IS
C           GIVEN IN CASE M=1.
C           ERROR PARAMETER IER=-1 DOES NOT NECESSARILY MEAN THAT
C           MATRIX A IS SINGULAR, AS ONLY MAIN DIAGONAL ELEMENTS
C           ARE USED AS PIVOT ELEMENTS. POSSIBLY SUBROUTINE GELG (WHICH
C           WORKS WITH TOTAL PIVOTING) WOULD BE ABLE TO FIND A SOLUTION.
C
C        SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C           NONE
C
C        METHOD
C           SOLUTION IS DONE BY MEANS OF GAUSS-ELIMINATION WITH
C           PIVOTING IN MAIN DIAGONAL, IN ORDER TO PRESERVE
C           SYMMETRY IN REMAINING COEFFICIENT MATRICES.
C
C     ..................................................................
C
*/

/*							hyp2f1.c
 *
 *	Gauss hypergeometric function   F
 *	                               2 1
 *
 *
 * SYNOPSIS:
 *
 * double a, b, c, x, y, hyp2f1();
 *
 * y = hyp2f1( a, b, c, x );
 *
 *
 * DESCRIPTION:
 *
 *
 *  hyp2f1( a, b, c, x )  =   F ( a, b; c; x )
 *                           2 1
 *
 *           inf.
 *            -   a(a+1)...(a+k) b(b+1)...(b+k)   k+1
 *   =  1 +   >   -----------------------------  x   .
 *            -         c(c+1)...(c+k) (k+1)!
 *          k = 0
 *
 *  Cases addressed are
 *	Tests and escapes for negative integer a, b, or c
 *	Linear transformation if c - a or c - b negative integer
 *	Special case c = a or c = b
 *	Linear transformation for  x near +1
 *	Transformation for x < -0.5
 *	Psi function expansion if x > 0.5 and c - a - b integer
 *      Conditionally, a recurrence on c to make c-a-b > 0
 *
 * |x| > 1 is rejected.
 *
 * The parameters a, b, c are considered to be integer
 * valued if they are within 1.0e-14 of the nearest integer
 * (1.0e-13 for IEEE arithmetic).
 *
 * ACCURACY:
 *
 *
 *               Relative error (-1 < x < 1):
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      -1,7        230000      1.2e-11     5.2e-14
 *
 * Several special cases also tested with a, b, c in
 * the range -7 to 7.
 *
 * ERROR MESSAGES:
 *
 * A "partial loss of precision" message is printed if
 * the internally estimated relative error exceeds 1^-12.
 * A "singularity" message is printed on overflow or
 * in cases not addressed (such as x < -1).
 */

/*							hyperg.c
 *
 *	Confluent hypergeometric function
 *
 *
 *
 * SYNOPSIS:
 *
 * double a, b, x, y, hyperg();
 *
 * y = hyperg( a, b, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Computes the confluent hypergeometric function
 *
 *                          1           2
 *                       a x    a(a+1) x
 *   F ( a,b;x )  =  1 + ---- + --------- + ...
 *  1 1                  b 1!   b(b+1) 2!
 *
 * Many higher transcendental functions are special cases of
 * this power series.
 *
 * As is evident from the formula, b must not be a negative
 * integer or zero unless a is an integer with 0 >= a > b.
 *
 * The routine attempts both a direct summation of the series
 * and an asymptotic expansion.  In each case error due to
 * roundoff, cancellation, and nonconvergence is estimated.
 * The result with smaller estimated error is returned.
 *
 *
 *
 * ACCURACY:
 *
 * Tested at random points (a, b, x), all three variables
 * ranging from 0 to 30.
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       0,30         2000       1.2e-15     1.3e-16
 *    IEEE      0,30        30000       1.8e-14     1.1e-15
 *
 * Larger errors can be observed when b is near a negative
 * integer or zero.  Certain combinations of arguments yield
 * serious cancellation error in the power series summation
 * and also are not in the region of near convergence of the
 * asymptotic series.  An error message is printed if the
 * self-estimated relative error is greater than 1.0e-12.
 *
 */

/*							i0.c
 *
 *	Modified Bessel function of order zero
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, i0();
 *
 * y = i0( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns modified Bessel function of order zero of the
 * argument.
 *
 * The function is defined as i0(x) = j0( ix ).
 *
 * The range is partitioned into the two intervals [0,8] and
 * (8, infinity).  Chebyshev polynomial expansions are employed
 * in each interval.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       0,30         6000       8.2e-17     1.9e-17
 *    IEEE      0,30        30000       5.8e-16     1.4e-16
 *
 */
/*							i0e.c
 *
 *	Modified Bessel function of order zero,
 *	exponentially scaled
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, i0e();
 *
 * y = i0e( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns exponentially scaled modified Bessel function
 * of order zero of the argument.
 *
 * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0,30        30000       5.4e-16     1.2e-16
 * See i0().
 *
 */

/*							i1.c
 *
 *	Modified Bessel function of order one
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, i1();
 *
 * y = i1( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns modified Bessel function of order one of the
 * argument.
 *
 * The function is defined as i1(x) = -i j1( ix ).
 *
 * The range is partitioned into the two intervals [0,8] and
 * (8, infinity).  Chebyshev polynomial expansions are employed
 * in each interval.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       0, 30        3400       1.2e-16     2.3e-17
 *    IEEE      0, 30       30000       1.9e-15     2.1e-16
 *
 *
 */
/*							i1e.c
 *
 *	Modified Bessel function of order one,
 *	exponentially scaled
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, i1e();
 *
 * y = i1e( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns exponentially scaled modified Bessel function
 * of order one of the argument.
 *
 * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0, 30       30000       2.0e-15     2.0e-16
 * See i1().
 *
 */

/*							igam.c
 *
 *	Incomplete gamma integral
 *
 *
 *
 * SYNOPSIS:
 *
 * double a, x, y, igam();
 *
 * y = igam( a, x );
 *
 * DESCRIPTION:
 *
 * The function is defined by
 *
 *                           x
 *                            -
 *                   1       | |  -t  a-1
 *  igam(a,x)  =   -----     |   e   t   dt.
 *                  -      | |
 *                 | (a)    -
 *                           0
 *
 *
 * In this implementation both arguments must be positive.
 * The integral is evaluated by either a power series or
 * continued fraction expansion, depending on the relative
 * values of a and x.
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0,30       200000       3.6e-14     2.9e-15
 *    IEEE      0,100      300000       9.9e-14     1.5e-14
 */
/*							igamc()
 *
 *	Complemented incomplete gamma integral
 *
 *
 *
 * SYNOPSIS:
 *
 * double a, x, y, igamc();
 *
 * y = igamc( a, x );
 *
 * DESCRIPTION:
 *
 * The function is defined by
 *
 *
 *  igamc(a,x)   =   1 - igam(a,x)
 *
 *                            inf.
 *                              -
 *                     1       | |  -t  a-1
 *               =   -----     |   e   t   dt.
 *                    -      | |
 *                   | (a)    -
 *                             x
 *
 *
 * In this implementation both arguments must be positive.
 * The integral is evaluated by either a power series or
 * continued fraction expansion, depending on the relative
 * values of a and x.
 *
 * ACCURACY:
 *
 * Tested at random a, x.
 *                a         x                      Relative error:
 * arithmetic   domain   domain     # trials      peak         rms
 *    IEEE     0.5,100   0,100      200000       1.9e-14     1.7e-15
 *    IEEE     0.01,0.5  0,100      200000       1.4e-13     1.6e-15
 */

/*							igami()
 *
 *      Inverse of complemented imcomplete gamma integral
 *
 *
 *
 * SYNOPSIS:
 *
 * double a, x, p, igami();
 *
 * x = igami( a, p );
 *
 * DESCRIPTION:
 *
 * Given p, the function finds x such that
 *
 *  igamc( a, x ) = p.
 *
 * Starting with the approximate value
 *
 *         3
 *  x = a t
 *
 *  where
 *
 *  t = 1 - d - ndtri(p) sqrt(d)
 * 
 * and
 *
 *  d = 1/9a,
 *
 * the ro