/* acosh.c * * Inverse hyperbolic cosine * * * * SYNOPSIS: * * double x, y, acosh(); * * y = acosh( x ); * * * * DESCRIPTION: * * Returns inverse hyperbolic cosine of argument. * * If 1 <= x < 1.5, a rational approximation * * sqrt(z) * P(z)/Q(z) * * where z = x-1, is used. Otherwise, * * acosh(x) = log( x + sqrt( (x-1)(x+1) ). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC 1,3 30000 4.2e-17 1.1e-17 * IEEE 1,3 30000 4.6e-16 8.7e-17 * * * ERROR MESSAGES: * * message condition value returned * acosh domain |x| < 1 NAN * */ /* airy.c * * Airy function * * * * SYNOPSIS: * * double x, ai, aip, bi, bip; * int airy(); * * airy( x, _&ai, _&aip, _&bi, _&bip ); * * * * DESCRIPTION: * * Solution of the differential equation * * y"(x) = xy. * * The function returns the two independent solutions Ai, Bi * and their first derivatives Ai'(x), Bi'(x). * * Evaluation is by power series summation for small x, * by rational minimax approximations for large x. * * * * ACCURACY: * Error criterion is absolute when function <= 1, relative * when function > 1, except * denotes relative error criterion. * For large negative x, the absolute error increases as x^1.5. * For large positive x, the relative error increases as x^1.5. * * Arithmetic domain function # trials peak rms * IEEE -10, 0 Ai 10000 1.6e-15 2.7e-16 * IEEE 0, 10 Ai 10000 2.3e-14* 1.8e-15* * IEEE -10, 0 Ai' 10000 4.6e-15 7.6e-16 * IEEE 0, 10 Ai' 10000 1.8e-14* 1.5e-15* * IEEE -10, 10 Bi 30000 4.2e-15 5.3e-16 * IEEE -10, 10 Bi' 30000 4.9e-15 7.3e-16 * DEC -10, 0 Ai 5000 1.7e-16 2.8e-17 * DEC 0, 10 Ai 5000 2.1e-15* 1.7e-16* * DEC -10, 0 Ai' 5000 4.7e-16 7.8e-17 * DEC 0, 10 Ai' 12000 1.8e-15* 1.5e-16* * DEC -10, 10 Bi 10000 5.5e-16 6.8e-17 * DEC -10, 10 Bi' 7000 5.3e-16 8.7e-17 * */ /* asin.c * * Inverse circular sine * * * * SYNOPSIS: * * double x, y, asin(); * * y = asin( x ); * * * * DESCRIPTION: * * Returns radian angle between -pi/2 and +pi/2 whose sine is x. * * A rational function of the form x + x**3 P(x**2)/Q(x**2) * is used for |x| in the interval [0, 0.5]. If |x| > 0.5 it is * transformed by the identity * * asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ). * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -1, 1 40000 2.6e-17 7.1e-18 * IEEE -1, 1 10^6 1.9e-16 5.4e-17 * * * ERROR MESSAGES: * * message condition value returned * asin domain |x| > 1 NAN * */ /* acos() * * Inverse circular cosine * * * * SYNOPSIS: * * double x, y, acos(); * * y = acos( x ); * * * * DESCRIPTION: * * Returns radian angle between 0 and pi whose cosine * is x. * * Analytically, acos(x) = pi/2 - asin(x). However if |x| is * near 1, there is cancellation error in subtracting asin(x) * from pi/2. Hence if x < -0.5, * * acos(x) = pi - 2.0 * asin( sqrt((1+x)/2) ); * * or if x > +0.5, * * acos(x) = 2.0 * asin( sqrt((1-x)/2) ). * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -1, 1 50000 3.3e-17 8.2e-18 * IEEE -1, 1 10^6 2.2e-16 6.5e-17 * * * ERROR MESSAGES: * * message condition value returned * asin domain |x| > 1 NAN */ /* asinh.c * * Inverse hyperbolic sine * * * * SYNOPSIS: * * double x, y, asinh(); * * y = asinh( x ); * * * * DESCRIPTION: * * Returns inverse hyperbolic sine of argument. * * If |x| < 0.5, the function is approximated by a rational * form x + x**3 P(x)/Q(x). Otherwise, * * asinh(x) = log( x + sqrt(1 + x*x) ). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -3,3 75000 4.6e-17 1.1e-17 * IEEE -1,1 30000 3.7e-16 7.8e-17 * IEEE 1,3 30000 2.5e-16 6.7e-17 * */ /* atan.c * * Inverse circular tangent * (arctangent) * * * * SYNOPSIS: * * double x, y, atan(); * * y = atan( x ); * * * * DESCRIPTION: * * Returns radian angle between -pi/2 and +pi/2 whose tangent * is x. * * Range reduction is from three intervals into the interval * from zero to 0.66. The approximant uses a rational * function of degree 4/5 of the form x + x**3 P(x)/Q(x). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10, 10 50000 2.4e-17 8.3e-18 * IEEE -10, 10 10^6 1.8e-16 5.0e-17 * */ /* atan2() * * Quadrant correct inverse circular tangent * * * * SYNOPSIS: * * double x, y, z, atan2(); * * z = atan2( y, x ); * * * * DESCRIPTION: * * Returns radian angle whose tangent is y/x. * Define compile time symbol ANSIC = 1 for ANSI standard, * range -PI < z <= +PI, args (y,x); else ANSIC = 0 for range * 0 to 2PI, args (x,y). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10, 10 10^6 2.5e-16 6.9e-17 * See atan.c. * */ /* atanh.c * * Inverse hyperbolic tangent * * * * SYNOPSIS: * * double x, y, atanh(); * * y = atanh( x ); * * * * DESCRIPTION: * * Returns inverse hyperbolic tangent of argument in the range * MINLOG to MAXLOG. * * If |x| < 0.5, the rational form x + x**3 P(x)/Q(x) is * employed. Otherwise, * atanh(x) = 0.5 * log( (1+x)/(1-x) ). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -1,1 50000 2.4e-17 6.4e-18 * IEEE -1,1 30000 1.9e-16 5.2e-17 * */ /* bdtr.c * * Binomial distribution * * * * SYNOPSIS: * * int k, n; * double p, y, bdtr(); * * y = bdtr( k, n, p ); * * DESCRIPTION: * * Returns the sum of the terms 0 through k of the Binomial * probability density: * * k * -- ( n ) j n-j * > ( ) p (1-p) * -- ( j ) * j=0 * * The terms are not summed directly; instead the incomplete * beta integral is employed, according to the formula * * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ). * * The arguments must be positive, with p ranging from 0 to 1. * * ACCURACY: * * Tested at random points (a,b,p), with p between 0 and 1. * * a,b Relative error: * arithmetic domain # trials peak rms * For p between 0.001 and 1: * IEEE 0,100 100000 4.3e-15 2.6e-16 * See also incbet.c. * * ERROR MESSAGES: * * message condition value returned * bdtr domain k < 0 0.0 * n < k * x < 0, x > 1 */ /* bdtrc() * * Complemented binomial distribution * * * * SYNOPSIS: * * int k, n; * double p, y, bdtrc(); * * y = bdtrc( k, n, p ); * * DESCRIPTION: * * Returns the sum of the terms k+1 through n of the Binomial * probability density: * * n * -- ( n ) j n-j * > ( ) p (1-p) * -- ( j ) * j=k+1 * * The terms are not summed directly; instead the incomplete * beta integral is employed, according to the formula * * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ). * * The arguments must be positive, with p ranging from 0 to 1. * * ACCURACY: * * Tested at random points (a,b,p). * * a,b Relative error: * arithmetic domain # trials peak rms * For p between 0.001 and 1: * IEEE 0,100 100000 6.7e-15 8.2e-16 * For p between 0 and .001: * IEEE 0,100 100000 1.5e-13 2.7e-15 * * ERROR MESSAGES: * * message condition value returned * bdtrc domain x<0, x>1, n<k 0.0 */ /* bdtri() * * Inverse binomial distribution * * * * SYNOPSIS: * * int k, n; * double p, y, bdtri(); * * p = bdtr( k, n, y ); * * DESCRIPTION: * * Finds the event probability p such that the sum of the * terms 0 through k of the Binomial probability density * is equal to the given cumulative probability y. * * This is accomplished using the inverse beta integral * function and the relation * * 1 - p = incbi( n-k, k+1, y ). * * ACCURACY: * * Tested at random points (a,b,p). * * a,b Relative error: * arithmetic domain # trials peak rms * For p between 0.001 and 1: * IEEE 0,100 100000 2.3e-14 6.4e-16 * IEEE 0,10000 100000 6.6e-12 1.2e-13 * For p between 10^-6 and 0.001: * IEEE 0,100 100000 2.0e-12 1.3e-14 * IEEE 0,10000 100000 1.5e-12 3.2e-14 * See also incbi.c. * * ERROR MESSAGES: * * message condition value returned * bdtri domain k < 0, n <= k 0.0 * x < 0, x > 1 */ /* beta.c * * Beta function * * * * SYNOPSIS: * * double a, b, y, beta(); * * y = beta( a, b ); * * * * DESCRIPTION: * * - - * | (a) | (b) * beta( a, b ) = -----------. * - * | (a+b) * * For large arguments the logarithm of the function is * evaluated using lgam(), then exponentiated. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC 0,30 1700 7.7e-15 1.5e-15 * IEEE 0,30 30000 8.1e-14 1.1e-14 * * ERROR MESSAGES: * * message condition value returned * beta overflow log(beta) > MAXLOG 0.0 * a or b <0 integer 0.0 * */ /* btdtr.c * * Beta distribution * * * * SYNOPSIS: * * double a, b, x, y, btdtr(); * * y = btdtr( a, b, x ); * * * * DESCRIPTION: * * Returns the area from zero to x under the beta density * function: * * * x * - - * | (a+b) | | a-1 b-1 * P(x) = ---------- | t (1-t) dt * - - | | * | (a) | (b) - * 0 * * * This function is identical to the incomplete beta * integral function incbet(a, b, x). * * The complemented function is * * 1 - P(1-x) = incbet( b, a, x ); * * * ACCURACY: * * See incbet.c. * */ /* cbrt.c * * Cube root * * * * SYNOPSIS: * * double x, y, cbrt(); * * y = cbrt( x ); * * * * DESCRIPTION: * * Returns the cube root of the argument, which may be negative. * * Range reduction involves determining the power of 2 of * the argument. A polynomial of degree 2 applied to the * mantissa, and multiplication by the cube root of 1, 2, or 4 * approximates the root to within about 0.1%. Then Newton's * iteration is used three times to converge to an accurate * result. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,10 200000 1.8e-17 6.2e-18 * IEEE 0,1e308 30000 1.5e-16 5.0e-17 * */ /* chbevl.c * * Evaluate Chebyshev series * * * * SYNOPSIS: * * int N; * double x, y, coef[N], chebevl(); * * y = chbevl( x, coef, N ); * * * * DESCRIPTION: * * Evaluates the series * * N-1 * - ' * y = > coef[i] T (x/2) * - i * i=0 * * of Chebyshev polynomials Ti at argument x/2. * * Coefficients are stored in reverse order, i.e. the zero * order term is last in the array. Note N is the number of * coefficients, not the order. * * If coefficients are for the interval a to b, x must * have been transformed to x -> 2(2x - b - a)/(b-a) before * entering the routine. This maps x from (a, b) to (-1, 1), * over which the Chebyshev polynomials are defined. * * If the coefficients are for the inverted interval, in * which (a, b) is mapped to (1/b, 1/a), the transformation * required is x -> 2(2ab/x - b - a)/(b-a). If b is infinity, * this becomes x -> 4a/x - 1. * * * * SPEED: * * Taking advantage of the recurrence properties of the * Chebyshev polynomials, the routine requires one more * addition per loop than evaluating a nested polynomial of * the same degree. * */ /* chdtr.c * * Chi-square distribution * * * * SYNOPSIS: * * double df, x, y, chdtr(); * * y = chdtr( df, x ); * * * * DESCRIPTION: * * Returns the area under the left hand tail (from 0 to x) * of the Chi square probability density function with * v degrees of freedom. * * * inf. * - * 1 | | v/2-1 -t/2 * P( x | v ) = ----------- | t e dt * v/2 - | | * 2 | (v/2) - * x * * where x is the Chi-square variable. * * The incomplete gamma integral is used, according to the * formula * * y = chdtr( v, x ) = igam( v/2.0, x/2.0 ). * * * The arguments must both be positive. * * * * ACCURACY: * * See igam(). * * ERROR MESSAGES: * * message condition value returned * chdtr domain x < 0 or v < 1 0.0 */ /* chdtrc() * * Complemented Chi-square distribution * * * * SYNOPSIS: * * double v, x, y, chdtrc(); * * y = chdtrc( v, x ); * * * * DESCRIPTION: * * Returns the area under the right hand tail (from x to * infinity) of the Chi square probability density function * with v degrees of freedom: * * * inf. * - * 1 | | v/2-1 -t/2 * P( x | v ) = ----------- | t e dt * v/2 - | | * 2 | (v/2) - * x * * where x is the Chi-square variable. * * The incomplete gamma integral is used, according to the * formula * * y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ). * * * The arguments must both be positive. * * * * ACCURACY: * * See igamc(). * * ERROR MESSAGES: * * message condition value returned * chdtrc domain x < 0 or v < 1 0.0 */ /* chdtri() * * Inverse of complemented Chi-square distribution * * * * SYNOPSIS: * * double df, x, y, chdtri(); * * x = chdtri( df, y ); * * * * * DESCRIPTION: * * Finds the Chi-square argument x such that the integral * from x to infinity of the Chi-square density is equal * to the given cumulative probability y. * * This is accomplished using the inverse gamma integral * function and the relation * * x/2 = igami( df/2, y ); * * * * * ACCURACY: * * See igami.c. * * ERROR MESSAGES: * * message condition value returned * chdtri domain y < 0 or y > 1 0.0 * v < 1 * */ /* clog.c * * Complex natural logarithm * * * * SYNOPSIS: * * void clog(); * cmplx z, w; * * clog( &z, &w ); * * * * DESCRIPTION: * * Returns complex logarithm to the base e (2.718...) of * the complex argument x. * * If z = x + iy, r = sqrt( x**2 + y**2 ), * then * w = log(r) + i arctan(y/x). * * The arctangent ranges from -PI to +PI. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 7000 8.5e-17 1.9e-17 * IEEE -10,+10 30000 5.0e-15 1.1e-16 * * Larger relative error can be observed for z near 1 +i0. * In IEEE arithmetic the peak absolute error is 5.2e-16, rms * absolute error 1.0e-16. */ /* cexp() * * Complex exponential function * * * * SYNOPSIS: * * void cexp(); * cmplx z, w; * * cexp( &z, &w ); * * * * DESCRIPTION: * * Returns the exponential of the complex argument z * into the complex result w. * * If * z = x + iy, * r = exp(x), * * then * * w = r cos y + i r sin y. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 8700 3.7e-17 1.1e-17 * IEEE -10,+10 30000 3.0e-16 8.7e-17 * */ /* csin() * * Complex circular sine * * * * SYNOPSIS: * * void csin(); * cmplx z, w; * * csin( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * w = sin x cosh y + i cos x sinh y. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 8400 5.3e-17 1.3e-17 * IEEE -10,+10 30000 3.8e-16 1.0e-16 * Also tested by csin(casin(z)) = z. * */ /* ccos() * * Complex circular cosine * * * * SYNOPSIS: * * void ccos(); * cmplx z, w; * * ccos( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * w = cos x cosh y - i sin x sinh y. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 8400 4.5e-17 1.3e-17 * IEEE -10,+10 30000 3.8e-16 1.0e-16 */ /* ctan() * * Complex circular tangent * * * * SYNOPSIS: * * void ctan(); * cmplx z, w; * * ctan( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * sin 2x + i sinh 2y * w = --------------------. * cos 2x + cosh 2y * * On the real axis the denominator is zero at odd multiples * of PI/2. The denominator is evaluated by its Taylor * series near these points. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 5200 7.1e-17 1.6e-17 * IEEE -10,+10 30000 7.2e-16 1.2e-16 * Also tested by ctan * ccot = 1 and catan(ctan(z)) = z. */ /* ccot() * * Complex circular cotangent * * * * SYNOPSIS: * * void ccot(); * cmplx z, w; * * ccot( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * sin 2x - i sinh 2y * w = --------------------. * cosh 2y - cos 2x * * On the real axis, the denominator has zeros at even * multiples of PI/2. Near these points it is evaluated * by a Taylor series. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 3000 6.5e-17 1.6e-17 * IEEE -10,+10 30000 9.2e-16 1.2e-16 * Also tested by ctan * ccot = 1 + i0. */ /* casin() * * Complex circular arc sine * * * * SYNOPSIS: * * void casin(); * cmplx z, w; * * casin( &z, &w ); * * * * DESCRIPTION: * * Inverse complex sine: * * 2 * w = -i clog( iz + csqrt( 1 - z ) ). * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 10100 2.1e-15 3.4e-16 * IEEE -10,+10 30000 2.2e-14 2.7e-15 * Larger relative error can be observed for z near zero. * Also tested by csin(casin(z)) = z. */ /* cacos() * * Complex circular arc cosine * * * * SYNOPSIS: * * void cacos(); * cmplx z, w; * * cacos( &z, &w ); * * * * DESCRIPTION: * * * w = arccos z = PI/2 - arcsin z. * * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 5200 1.6e-15 2.8e-16 * IEEE -10,+10 30000 1.8e-14 2.2e-15 */ /* catan() * * Complex circular arc tangent * * * * SYNOPSIS: * * void catan(); * cmplx z, w; * * catan( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * 1 ( 2x ) * Re w = - arctan(-----------) + k PI * 2 ( 2 2) * (1 - x - y ) * * ( 2 2) * 1 (x + (y+1) ) * Im w = - log(------------) * 4 ( 2 2) * (x + (y-1) ) * * Where k is an arbitrary integer. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 5900 1.3e-16 7.8e-18 * IEEE -10,+10 30000 2.3e-15 8.5e-17 * The check catan( ctan(z) ) = z, with |x| and |y| < PI/2, * had peak relative error 1.5e-16, rms relative error * 2.9e-17. See also clog(). */ /* cmplx.c * * Complex number arithmetic * * * * SYNOPSIS: * * typedef struct { * double r; real part * double i; imaginary part * }cmplx; * * cmplx *a, *b, *c; * * cadd( a, b, c ); c = b + a * csub( a, b, c ); c = b - a * cmul( a, b, c ); c = b * a * cdiv( a, b, c ); c = b / a * cneg( c ); c = -c * cmov( b, c ); c = b * * * * DESCRIPTION: * * Addition: * c.r = b.r + a.r * c.i = b.i + a.i * * Subtraction: * c.r = b.r - a.r * c.i = b.i - a.i * * Multiplication: * c.r = b.r * a.r - b.i * a.i * c.i = b.r * a.i + b.i * a.r * * Division: * d = a.r * a.r + a.i * a.i * c.r = (b.r * a.r + b.i * a.i)/d * c.i = (b.i * a.r - b.r * a.i)/d * ACCURACY: * * In DEC arithmetic, the test (1/z) * z = 1 had peak relative * error 3.1e-17, rms 1.2e-17. The test (y/z) * (z/y) = 1 had * peak relative error 8.3e-17, rms 2.1e-17. * * Tests in the rectangle {-10,+10}: * Relative error: * arithmetic function # trials peak rms * DEC cadd 10000 1.4e-17 3.4e-18 * IEEE cadd 100000 1.1e-16 2.7e-17 * DEC csub 10000 1.4e-17 4.5e-18 * IEEE csub 100000 1.1e-16 3.4e-17 * DEC cmul 3000 2.3e-17 8.7e-18 * IEEE cmul 100000 2.1e-16 6.9e-17 * DEC cdiv 18000 4.9e-17 1.3e-17 * IEEE cdiv 100000 3.7e-16 1.1e-16 */ /* cabs() * * Complex absolute value * * * * SYNOPSIS: * * double cabs(); * cmplx z; * double a; * * a = cabs( &z ); * * * * DESCRIPTION: * * * If z = x + iy * * then * * a = sqrt( x**2 + y**2 ). * * Overflow and underflow are avoided by testing the magnitudes * of x and y before squaring. If either is outside half of * the floating point full scale range, both are rescaled. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -30,+30 30000 3.2e-17 9.2e-18 * IEEE -10,+10 100000 2.7e-16 6.9e-17 */ /* csqrt() * * Complex square root * * * * SYNOPSIS: * * void csqrt(); * cmplx z, w; * * csqrt( &z, &w ); * * * * DESCRIPTION: * * * If z = x + iy, r = |z|, then * * 1/2 * Im w = [ (r - x)/2 ] , * * Re w = y / 2 Im w. * * * Note that -w is also a square root of z. The root chosen * is always in the upper half plane. * * Because of the potential for cancellation error in r - x, * the result is sharpened by doing a Heron iteration * (see sqrt.c) in complex arithmetic. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 25000 3.2e-17 9.6e-18 * IEEE -10,+10 100000 3.2e-16 7.7e-17 * * 2 * Also tested by csqrt( z ) = z, and tested by arguments * close to the real axis. */ /* const.c * * Globally declared constants * * * * SYNOPSIS: * * extern double nameofconstant; * * * * * DESCRIPTION: * * This file contains a number of mathematical constants and * also some needed size parameters of the computer arithmetic. * The values are supplied as arrays of hexadecimal integers * for IEEE arithmetic; arrays of octal constants for DEC * arithmetic; and in a normal decimal scientific notation for * other machines. The particular notation used is determined * by a symbol (DEC, IBMPC, or UNK) defined in the include file * math.h. * * The default size parameters are as follows. * * For DEC and UNK modes: * MACHEP = 1.38777878078144567553E-17 2**-56 * MAXLOG = 8.8029691931113054295988E1 log(2**127) * MINLOG = -8.872283911167299960540E1 log(2**-128) * MAXNUM = 1.701411834604692317316873e38 2**127 * * For IEEE arithmetic (IBMPC): * MACHEP = 1.11022302462515654042E-16 2**-53 * MAXLOG = 7.09782712893383996843E2 log(2**1024) * MINLOG = -7.08396418532264106224E2 log(2**-1022) * MAXNUM = 1.7976931348623158E308 2**1024 * * The global symbols for mathematical constants are * PI = 3.14159265358979323846 pi * PIO2 = 1.57079632679489661923 pi/2 * PIO4 = 7.85398163397448309616E-1 pi/4 * SQRT2 = 1.41421356237309504880 sqrt(2) * SQRTH = 7.07106781186547524401E-1 sqrt(2)/2 * LOG2E = 1.4426950408889634073599 1/log(2) * SQ2OPI = 7.9788456080286535587989E-1 sqrt( 2/pi ) * LOGE2 = 6.93147180559945309417E-1 log(2) * LOGSQ2 = 3.46573590279972654709E-1 log(2)/2 * THPIO4 = 2.35619449019234492885 3*pi/4 * TWOOPI = 6.36619772367581343075535E-1 2/pi * * These lists are subject to change. */ /* cosh.c * * Hyperbolic cosine * * * * SYNOPSIS: * * double x, y, cosh(); * * y = cosh( x ); * * * * DESCRIPTION: * * Returns hyperbolic cosine of argument in the range MINLOG to * MAXLOG. * * cosh(x) = ( exp(x) + exp(-x) )/2. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC +- 88 50000 4.0e-17 7.7e-18 * IEEE +-MAXLOG 30000 2.6e-16 5.7e-17 * * * ERROR MESSAGES: * * message condition value returned * cosh overflow |x| > MAXLOG MAXNUM * * */ /* cpmul.c * * Multiply two polynomials with complex coefficients * * * * SYNOPSIS: * * typedef struct * { * double r; * double i; * }cmplx; * * cmplx a[], b[], c[]; * int da, db, dc; * * cpmul( a, da, b, db, c, &dc ); * * * * DESCRIPTION: * * The two argument polynomials are multiplied together, and * their product is placed in c. * * Each polynomial is represented by its coefficients stored * as an array of complex number structures (see the typedef). * The degree of a is da, which must be passed to the routine * as an argument; similarly the degree db of b is an argument. * Array a has da + 1 elements and array b has db + 1 elements. * Array c must have storage allocated for at least da + db + 1 * elements. The value da + db is returned in dc; this is * the degree of the product polynomial. * * Polynomial coefficients are stored in ascending order; i.e., * a(x) = a[0]*x**0 + a[1]*x**1 + ... + a[da]*x**da. * * * If desired, c may be the same as either a or b, in which * case the input argument array is replaced by the product * array (but only up to terms of degree da + db). * */ /* dawsn.c * * Dawson's Integral * * * * SYNOPSIS: * * double x, y, dawsn(); * * y = dawsn( x ); * * * * DESCRIPTION: * * Approximates the integral * * x * - * 2 | | 2 * dawsn(x) = exp( -x ) | exp( t ) dt * | | * - * 0 * * Three different rational approximations are employed, for * the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,10 10000 6.9e-16 1.0e-16 * DEC 0,10 6000 7.4e-17 1.4e-17 * * */ /* drand.c * * Pseudorandom number generator * * * * SYNOPSIS: * * double y, drand(); * * drand( &y ); * * * * DESCRIPTION: * * Yields a random number 1.0 <= y < 2.0. * * The three-generator congruential algorithm by Brian * Wichmann and David Hill (BYTE magazine, March, 1987, * pp 127-8) is used. The period, given by them, is * 6953607871644. * * Versions invoked by the different arithmetic compile * time options DEC, IBMPC, and MIEEE, produce * approximately the same sequences, differing only in the * least significant bits of the numbers. The UNK option * implements the algorithm as recommended in the BYTE * article. It may be used on all computers. However, * the low order bits of a double precision number may * not be adequately random, and may vary due to arithmetic * implementation details on different computers. * * The other compile options generate an additional random * integer that overwrites the low order bits of the double * precision number. This reduces the period by a factor of * two but tends to overcome the problems mentioned. * */ /* eigens.c * * Eigenvalues and eigenvectors of a real symmetric matrix * * * * SYNOPSIS: * * int n; * double A[n*(n+1)/2], EV[n*n], E[n]; * void eigens( A, EV, E, n ); * * * * DESCRIPTION: * * The algorithm is due to J. vonNeumann. * * A[] is a symmetric matrix stored in lower triangular form. * That is, A[ row, column ] = A[ (row*row+row)/2 + column ] * or equivalently with row and column interchanged. The * indices row and column run from 0 through n-1. * * EV[] is the output matrix of eigenvectors stored columnwise. * That is, the elements of each eigenvector appear in sequential * memory order. The jth element of the ith eigenvector is * EV[ n*i+j ] = EV[i][j]. * * E[] is the output matrix of eigenvalues. The ith element * of E corresponds to the ith eigenvector (the ith row of EV). * * On output, the matrix A will have been diagonalized and its * orginal contents are destroyed. * * ACCURACY: * * The error is controlled by an internal parameter called RANGE * which is set to 1e-10. After diagonalization, the * off-diagonal elements of A will have been reduced by * this factor. * * ERROR MESSAGES: * * None. * */ /* ellie.c * * Incomplete elliptic integral of the second kind * * * * SYNOPSIS: * * double phi, m, y, ellie(); * * y = ellie( phi, m ); * * * * DESCRIPTION: * * Approximates the integral * * * phi * - * | | * | 2 * E(phi_\m) = | sqrt( 1 - m sin t ) dt * | * | | * - * 0 * * of amplitude phi and modulus m, using the arithmetic - * geometric mean algorithm. * * * * ACCURACY: * * Tested at random arguments with phi in [-10, 10] and m in * [0, 1]. * Relative error: * arithmetic domain # trials peak rms * DEC 0,2 2000 1.9e-16 3.4e-17 * IEEE -10,10 150000 3.3e-15 1.4e-16 * * */ /* ellik.c * * Incomplete elliptic integral of the first kind * * * * SYNOPSIS: * * double phi, m, y, ellik(); * * y = ellik( phi, m ); * * * * DESCRIPTION: * * Approximates the integral * * * * phi * - * | | * | dt * F(phi_\m) = | ------------------ * | 2 * | | sqrt( 1 - m sin t ) * - * 0 * * of amplitude phi and modulus m, using the arithmetic - * geometric mean algorithm. * * * * * ACCURACY: * * Tested at random points with m in [0, 1] and phi as indicated. * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,10 200000 7.4e-16 1.0e-16 * * */ /* ellpe.c * * Complete elliptic integral of the second kind * * * * SYNOPSIS: * * double m1, y, ellpe(); * * y = ellpe( m1 ); * * * * DESCRIPTION: * * Approximates the integral * * * pi/2 * - * | | 2 * E(m) = | sqrt( 1 - m sin t ) dt * | | * - * 0 * * Where m = 1 - m1, using the approximation * * P(x) - x log x Q(x). * * Though there are no singularities, the argument m1 is used * rather than m for compatibility with ellpk(). * * E(1) = 1; E(0) = pi/2. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC 0, 1 13000 3.1e-17 9.4e-18 * IEEE 0, 1 10000 2.1e-16 7.3e-17 * * * ERROR MESSAGES: * * message condition value returned * ellpe domain x<0, x>1 0.0 * */ /* ellpj.c * * Jacobian Elliptic Functions * * * * SYNOPSIS: * * double u, m, sn, cn, dn, phi; * int ellpj(); * * ellpj( u, m, _&sn, _&cn, _&dn, _&phi ); * * * * DESCRIPTION: * * * Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m), * and dn(u|m) of parameter m between 0 and 1, and real * argument u. * * These functions are periodic, with quarter-period on the * real axis equal to the complete elliptic integral * ellpk(1.0-m). * * Relation to incomplete elliptic integral: * If u = ellik(phi,m), then sn(u|m) = sin(phi), * and cn(u|m) = cos(phi). Phi is called the amplitude of u. * * Computation is by means of the arithmetic-geometric mean * algorithm, except when m is within 1e-9 of 0 or 1. In the * latter case with m close to 1, the approximation applies * only for phi < pi/2. * * ACCURACY: * * Tested at random points with u between 0 and 10, m between * 0 and 1. * * Absolute error (* = relative error): * arithmetic function # trials peak rms * DEC sn 1800 4.5e-16 8.7e-17 * IEEE phi 10000 9.2e-16* 1.4e-16* * IEEE sn 50000 4.1e-15 4.6e-16 * IEEE cn 40000 3.6e-15 4.4e-16 * IEEE dn 10000 1.3e-12 1.8e-14 * * Peak error observed in consistency check using addition * theorem for sn(u+v) was 4e-16 (absolute). Also tested by * the above relation to the incomplete elliptic integral. * Accuracy deteriorates when u is large. * */ /* ellpk.c * * Complete elliptic integral of the first kind * * * * SYNOPSIS: * * double m1, y, ellpk(); * * y = ellpk( m1 ); * * * * DESCRIPTION: * * Approximates the integral * * * * pi/2 * - * | | * | dt * K(m) = | ------------------ * | 2 * | | sqrt( 1 - m sin t ) * - * 0 * * where m = 1 - m1, using the approximation * * P(x) - log x Q(x). * * The argument m1 is used rather than m so that the logarithmic * singularity at m = 1 will be shifted to the origin; this * preserves maximum accuracy. * * K(0) = pi/2. * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC 0,1 16000 3.5e-17 1.1e-17 * IEEE 0,1 30000 2.5e-16 6.8e-17 * * ERROR MESSAGES: * * message condition value returned * ellpk domain x<0, x>1 0.0 * */ /* euclid.c * * Rational arithmetic routines * * * * SYNOPSIS: * * * typedef struct * { * double n; numerator * double d; denominator * }fract; * * radd( a, b, c ) c = b + a * rsub( a, b, c ) c = b - a * rmul( a, b, c ) c = b * a * rdiv( a, b, c ) c = b / a * euclid( &n, &d ) Reduce n/d to lowest terms, * return greatest common divisor. * * Arguments of the routines are pointers to the structures. * The double precision numbers are assumed, without checking, * to be integer valued. Overflow conditions are reported. */ /* exp.c * * Exponential function * * * * SYNOPSIS: * * double x, y, exp(); * * y = exp( x ); * * * * DESCRIPTION: * * Returns e (2.71828...) raised to the x power. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that * * x k f * e = 2 e. * * A Pade' form 1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) * of degree 2/3 is used to approximate exp(f) in the basic * interval [-0.5, 0.5]. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC +- 88 50000 2.8e-17 7.0e-18 * IEEE +- 708 40000 2.0e-16 5.6e-17 * * * Error amplification in the exponential function can be * a serious matter. The error propagation involves * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), * which shows that a 1 lsb error in representing X produces * a relative error of X times 1 lsb in the function. * While the routine gives an accurate result for arguments * that are exactly represented by a double precision * computer number, the result contains amplified roundoff * error for large arguments not exactly represented. * * * ERROR MESSAGES: * * message condition value returned * exp underflow x < MINLOG 0.0 * exp overflow x > MAXLOG INFINITY * */ /* exp10.c * * Base 10 exponential function * (Common antilogarithm) * * * * SYNOPSIS: * * double x, y, exp10(); * * y = exp10( x ); * * * * DESCRIPTION: * * Returns 10 raised to the x power. * * Range reduction is accomplished by expressing the argument * as 10**x = 2**n 10**f, with |f| < 0.5 log10(2). * The Pade' form * * 1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) * * is used to approximate 10**f. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -307,+307 30000 2.2e-16 5.5e-17 * Test result from an earlier version (2.1): * DEC -38,+38 70000 3.1e-17 7.0e-18 * * ERROR MESSAGES: * * message condition value returned * exp10 underflow x < -MAXL10 0.0 * exp10 overflow x > MAXL10 MAXNUM * * DEC arithmetic: MAXL10 = 38.230809449325611792. * IEEE arithmetic: MAXL10 = 308.2547155599167. * */ /* exp2.c * * Base 2 exponential function * * * * SYNOPSIS: * * double x, y, exp2(); * * y = exp2( x ); * * * * DESCRIPTION: * * Returns 2 raised to the x power. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that * x k f * 2 = 2 2. * * A Pade' form * * 1 + 2x P(x**2) / (Q(x**2) - x P(x**2) ) * * approximates 2**x in the basic range [-0.5, 0.5]. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -1022,+1024 30000 1.8e-16 5.4e-17 * * * See exp.c for comments on error amplification. * * * ERROR MESSAGES: * * message condition value returned * exp underflow x < -MAXL2 0.0 * exp overflow x > MAXL2 MAXNUM * * For DEC arithmetic, MAXL2 = 127. * For IEEE arithmetic, MAXL2 = 1024. */ /* expn.c * * Exponential integral En * * * * SYNOPSIS: * * int n; * double x, y, expn(); * * y = expn( n, x ); * * * * DESCRIPTION: * * Evaluates the exponential integral * * inf. * - * | | -xt * | e * E (x) = | ---- dt. * n | n * | | t * - * 1 * * * Both n and x must be nonnegative. * * The routine employs either a power series, a continued * fraction, or an asymptotic formula depending on the * relative values of n and x. * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC 0, 30 5000 2.0e-16 4.6e-17 * IEEE 0, 30 10000 1.7e-15 3.6e-16 * */ /* fabs.c * * Absolute value * * * * SYNOPSIS: * * double x, y; * * y = fabs( x ); * * * * DESCRIPTION: * * Returns the absolute value of the argument. * */ /* fac.c * * Factorial function * * * * SYNOPSIS: * * double y, fac(); * int i; * * y = fac( i ); * * * * DESCRIPTION: * * Returns factorial of i = 1 * 2 * 3 * ... * i. * fac(0) = 1.0. * * Due to machine arithmetic bounds the largest value of * i accepted is 33 in DEC arithmetic or 170 in IEEE * arithmetic. Greater values, or negative ones, * produce an error message and return MAXNUM. * * * * ACCURACY: * * For i < 34 the values are simply tabulated, and have * full machine accuracy. If i > 55, fac(i) = gamma(i+1); * see gamma.c. * * Relative error: * arithmetic domain peak * IEEE 0, 170 1.4e-15 * DEC 0, 33 1.4e-17 * */ /* fdtr.c * * F distribution * * * * SYNOPSIS: * * int df1, df2; * double x, y, fdtr(); * * y = fdtr( df1, df2, x ); * * DESCRIPTION: * * Returns the area from zero to x under the F density * function (also known as Snedcor's density or the * variance ratio density). This is the density * of x = (u1/df1)/(u2/df2), where u1 and u2 are random * variables having Chi square distributions with df1 * and df2 degrees of freedom, respectively. * * The incomplete beta integral is used, according to the * formula * * P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ). * * * The arguments a and b are greater than zero, and x is * nonnegative. * * ACCURACY: * * Tested at random points (a,b,x). * * x a,b Relative error: * arithmetic domain domain # trials peak rms * IEEE 0,1 0,100 100000 9.8e-15 1.7e-15 * IEEE 1,5 0,100 100000 6.5e-15 3.5e-16 * IEEE 0,1 1,10000 100000 2.2e-11 3.3e-12 * IEEE 1,5 1,10000 100000 1.1e-11 1.7e-13 * See also incbet.c. * * * ERROR MESSAGES: * * message condition value returned * fdtr domain a<0, b<0, x<0 0.0 * */ /* fdtrc() * * Complemented F distribution * * * * SYNOPSIS: * * int df1, df2; * double x, y, fdtrc(); * * y = fdtrc( df1, df2, x ); * * DESCRIPTION: * * Returns the area from x to infinity under the F density * function (also known as Snedcor's density or the * variance ratio density). * * * inf. * - * 1 | | a-1 b-1 * 1-P(x) = ------ | t (1-t) dt * B(a,b) | | * - * x * * * The incomplete beta integral is used, according to the * formula * * P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ). * * * ACCURACY: * * Tested at random points (a,b,x) in the indicated intervals. * x a,b Relative error: * arithmetic domain domain # trials peak rms * IEEE 0,1 1,100 100000 3.7e-14 5.9e-16 * IEEE 1,5 1,100 100000 8.0e-15 1.6e-15 * IEEE 0,1 1,10000 100000 1.8e-11 3.5e-13 * IEEE 1,5 1,10000 100000 2.0e-11 3.0e-12 * See also incbet.c. * * ERROR MESSAGES: * * message condition value returned * fdtrc domain a<0, b<0, x<0 0.0 * */ /* fdtri() * * Inverse of complemented F distribution * * * * SYNOPSIS: * * int df1, df2; * double x, p, fdtri(); * * x = fdtri( df1, df2, p ); * * DESCRIPTION: * * Finds the F density argument x such that the integral * from x to infinity of the F density is equal to the * given probability p. * * This is accomplished using the inverse beta integral * function and the relations * * z = incbi( df2/2, df1/2, p ) * x = df2 (1-z) / (df1 z). * * Note: the following relations hold for the inverse of * the uncomplemented F distribution: * * z = incbi( df1/2, df2/2, p ) * x = df2 z / (df1 (1-z)). * * ACCURACY: * * Tested at random points (a,b,p). * * a,b Relative error: * arithmetic domain # trials peak rms * For p between .001 and 1: * IEEE 1,100 100000 8.3e-15 4.7e-16 * IEEE 1,10000 100000 2.1e-11 1.4e-13 * For p between 10^-6 and 10^-3: * IEEE 1,100 50000 1.3e-12 8.4e-15 * IEEE 1,10000 50000 3.0e-12 4.8e-14 * See also fdtrc.c. * * ERROR MESSAGES: * * message condition value returned * fdtri domain p <= 0 or p > 1 0.0 * v < 1 * */ /* fftr.c * * FFT of Real Valued Sequence * * * * SYNOPSIS: * * double x[], sine[]; * int m; * * fftr( x, m, sine ); * * * * DESCRIPTION: * * Computes the (complex valued) discrete Fourier transform of * the real valued sequence x[]. The input sequence x[] contains * n = 2**m samples. The program fills array sine[k] with * n/4 + 1 values of sin( 2 PI k / n ). * * Data format for complex valued output is real part followed * by imaginary part. The output is developed in the input * array x[]. * * The algorithm takes advantage of the fact that the FFT of an * n point real sequence can be obtained from an n/2 point * complex FFT. * * A radix 2 FFT algorithm is used. * * Execution time on an LSI-11/23 with floating point chip * is 1.0 sec for n = 256. * * * * REFERENCE: * * E. Oran Brigham, The Fast Fourier Transform; * Prentice-Hall, Inc., 1974 * */ /* ceil() * floor() * frexp() * ldexp() * signbit() * isnan() * isfinite() * * Floating point numeric utilities * * * * SYNOPSIS: * * double ceil(), floor(), frexp(), ldexp(); * int signbit(), isnan(), isfinite(); * double x, y; * int expnt, n; * * y = floor(x); * y = ceil(x); * y = frexp( x, &expnt ); * y = ldexp( x, n ); * n = signbit(x); * n = isnan(x); * n = isfinite(x); * * * * DESCRIPTION: * * All four routines return a double precision floating point * result. * * floor() returns the largest integer less than or equal to x. * It truncates toward minus infinity. * * ceil() returns the smallest integer greater than or equal * to x. It truncates toward plus infinity. * * frexp() extracts the exponent from x. It returns an integer * power of two to expnt and the significand between 0.5 and 1 * to y. Thus x = y * 2**expn. * * ldexp() multiplies x by 2**n. * * signbit(x) returns 1 if the sign bit of x is 1, else 0. * * These functions are part of the standard C run time library * for many but not all C compilers. The ones supplied are * written in C for either DEC or IEEE arithmetic. They should * be used only if your compiler library does not already have * them. * * The IEEE versions assume that denormal numbers are implemented * in the arithmetic. Some modifications will be required if * the arithmetic has abrupt rather than gradual underflow. */ /* fresnl.c * * Fresnel integral * * * * SYNOPSIS: * * double x, S, C; * void fresnl(); * * fresnl( x, _&S, _&C ); * * * DESCRIPTION: * * Evaluates the Fresnel integrals * * x * - * | | * C(x) = | cos(pi/2 t**2) dt, * | | * - * 0 * * x * - * | | * S(x) = | sin(pi/2 t**2) dt. * | | * - * 0 * * * The integrals are evaluated by a power series for x < 1. * For x >= 1 auxiliary functions f(x) and g(x) are employed * such that * * C(x) = 0.5 + f(x) sin( pi/2 x**2 ) - g(x) cos( pi/2 x**2 ) * S(x) = 0.5 - f(x) cos( pi/2 x**2 ) - g(x) sin( pi/2 x**2 ) * * * * ACCURACY: * * Relative error. * * Arithmetic function domain # trials peak rms * IEEE S(x) 0, 10 10000 2.0e-15 3.2e-16 * IEEE C(x) 0, 10 10000 1.8e-15 3.3e-16 * DEC S(x) 0, 10 6000 2.2e-16 3.9e-17 * DEC C(x) 0, 10 5000 2.3e-16 3.9e-17 */ /* gamma.c * * Gamma function * * * * SYNOPSIS: * * double x, y, gamma(); * extern int sgngam; * * y = gamma( x ); * * * * DESCRIPTION: * * Returns gamma function of the argument. The result is * correctly signed, and the sign (+1 or -1) is also * returned in a global (extern) variable named sgngam. * This variable is also filled in by the logarithmic gamma * function lgam(). * * Arguments |x| <= 34 are reduced by recurrence and the function * approximated by a rational function of degree 6/7 in the * interval (2,3). Large arguments are handled by Stirling's * formula. Large negative arguments are made positive using * a reflection formula. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -34, 34 10000 1.3e-16 2.5e-17 * IEEE -170,-33 20000 2.3e-15 3.3e-16 * IEEE -33, 33 20000 9.4e-16 2.2e-16 * IEEE 33, 171.6 20000 2.3e-15 3.2e-16 * * Error for arguments outside the test range will be larger * owing to error amplification by the exponential function. * */ /* lgam() * * Natural logarithm of gamma function * * * * SYNOPSIS: * * double x, y, lgam(); * extern int sgngam; * * y = lgam( x ); * * * * DESCRIPTION: * * Returns the base e (2.718...) logarithm of the absolute * value of the gamma function of the argument. * The sign (+1 or -1) of the gamma function is returned in a * global (extern) variable named sgngam. * * For arguments greater than 13, the logarithm of the gamma * function is approximated by the logarithmic version of * Stirling's formula using a polynomial approximation of * degree 4. Arguments between -33 and +33 are reduced by * recurrence to the interval [2,3] of a rational approximation. * The cosecant reflection formula is employed for arguments * less than -33. * * Arguments greater than MAXLGM return MAXNUM and an error * message. MAXLGM = 2.035093e36 for DEC * arithmetic or 2.556348e305 for IEEE arithmetic. * * * * ACCURACY: * * * arithmetic domain # trials peak rms * DEC 0, 3 7000 5.2e-17 1.3e-17 * DEC 2.718, 2.035e36 5000 3.9e-17 9.9e-18 * IEEE 0, 3 28000 5.4e-16 1.1e-16 * IEEE 2.718, 2.556e305 40000 3.5e-16 8.3e-17 * The error criterion was relative when the function magnitude * was greater than one but absolute when it was less than one. * * The following test used the relative error criterion, though * at certain points the relative error could be much higher than * indicated. * IEEE -200, -4 10000 4.8e-16 1.3e-16 * */ /* gdtr.c * * Gamma distribution function * * * * SYNOPSIS: * * double a, b, x, y, gdtr(); * * y = gdtr( a, b, x ); * * * * DESCRIPTION: * * Returns the integral from zero to x of the gamma probability * density function: * * * x * b - * a | | b-1 -at * y = ----- | t e dt * - | | * | (b) - * 0 * * The incomplete gamma integral is used, according to the * relation * * y = igam( b, ax ). * * * ACCURACY: * * See igam(). * * ERROR MESSAGES: * * message condition value returned * gdtr domain x < 0 0.0 * */ /* gdtrc.c * * Complemented gamma distribution function * * * * SYNOPSIS: * * double a, b, x, y, gdtrc(); * * y = gdtrc( a, b, x ); * * * * DESCRIPTION: * * Returns the integral from x to infinity of the gamma * probability density function: * * * inf. * b - * a | | b-1 -at * y = ----- | t e dt * - | | * | (b) - * x * * The incomplete gamma integral is used, according to the * relation * * y = igamc( b, ax ). * * * ACCURACY: * * See igamc(). * * ERROR MESSAGES: * * message condition value returned * gdtrc domain x < 0 0.0 * */ /* C C .................................................................. C C SUBROUTINE GELS C C PURPOSE C TO SOLVE A SYSTEM OF SIMULTANEOUS LINEAR EQUATIONS WITH C SYMMETRIC COEFFICIENT MATRIX UPPER TRIANGULAR PART OF WHICH C IS ASSUMED TO BE STORED COLUMNWISE. C C USAGE C CALL GELS(R,A,M,N,EPS,IER,AUX) C C DESCRIPTION OF PARAMETERS C R - M BY N RIGHT HAND SIDE MATRIX. (DESTROYED) C ON RETURN R CONTAINS THE SOLUTION OF THE EQUATIONS. C A - UPPER TRIANGULAR PART OF THE SYMMETRIC C M BY M COEFFICIENT MATRIX. (DESTROYED) C M - THE NUMBER OF EQUATIONS IN THE SYSTEM. C N - THE NUMBER OF RIGHT HAND SIDE VECTORS. C EPS - AN INPUT CONSTANT WHICH IS USED AS RELATIVE C TOLERANCE FOR TEST ON LOSS OF SIGNIFICANCE. C IER - RESULTING ERROR PARAMETER CODED AS FOLLOWS C IER=0 - NO ERROR, C IER=-1 - NO RESULT BECAUSE OF M LESS THAN 1 OR C PIVOT ELEMENT AT ANY ELIMINATION STEP C EQUAL TO 0, C IER=K - WARNING DUE TO POSSIBLE LOSS OF SIGNIFI- C CANCE INDICATED AT ELIMINATION STEP K+1, C WHERE PIVOT ELEMENT WAS LESS THAN OR C EQUAL TO THE INTERNAL TOLERANCE EPS TIMES C ABSOLUTELY GREATEST MAIN DIAGONAL C ELEMENT OF MATRIX A. C AUX - AN AUXILIARY STORAGE ARRAY WITH DIMENSION M-1. C C REMARKS C UPPER TRIANGULAR PART OF MATRIX A IS ASSUMED TO BE STORED C COLUMNWISE IN M*(M+1)/2 SUCCESSIVE STORAGE LOCATIONS, RIGHT C HAND SIDE MATRIX R COLUMNWISE IN N*M SUCCESSIVE STORAGE C LOCATIONS. ON RETURN SOLUTION MATRIX R IS STORED COLUMNWISE C TOO. C THE PROCEDURE GIVES RESULTS IF THE NUMBER OF EQUATIONS M IS C GREATER THAN 0 AND PIVOT ELEMENTS AT ALL ELIMINATION STEPS C ARE DIFFERENT FROM 0. HOWEVER WARNING IER=K - IF GIVEN - C INDICATES POSSIBLE LOSS OF SIGNIFICANCE. IN CASE OF A WELL C SCALED MATRIX A AND APPROPRIATE TOLERANCE EPS, IER=K MAY BE C INTERPRETED THAT MATRIX A HAS THE RANK K. NO WARNING IS C GIVEN IN CASE M=1. C ERROR PARAMETER IER=-1 DOES NOT NECESSARILY MEAN THAT C MATRIX A IS SINGULAR, AS ONLY MAIN DIAGONAL ELEMENTS C ARE USED AS PIVOT ELEMENTS. POSSIBLY SUBROUTINE GELG (WHICH C WORKS WITH TOTAL PIVOTING) WOULD BE ABLE TO FIND A SOLUTION. C C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED C NONE C C METHOD C SOLUTION IS DONE BY MEANS OF GAUSS-ELIMINATION WITH C PIVOTING IN MAIN DIAGONAL, IN ORDER TO PRESERVE C SYMMETRY IN REMAINING COEFFICIENT MATRICES. C C .................................................................. C */ /* hyp2f1.c * * Gauss hypergeometric function F * 2 1 * * * SYNOPSIS: * * double a, b, c, x, y, hyp2f1(); * * y = hyp2f1( a, b, c, x ); * * * DESCRIPTION: * * * hyp2f1( a, b, c, x ) = F ( a, b; c; x ) * 2 1 * * inf. * - a(a+1)...(a+k) b(b+1)...(b+k) k+1 * = 1 + > ----------------------------- x . * - c(c+1)...(c+k) (k+1)! * k = 0 * * Cases addressed are * Tests and escapes for negative integer a, b, or c * Linear transformation if c - a or c - b negative integer * Special case c = a or c = b * Linear transformation for x near +1 * Transformation for x < -0.5 * Psi function expansion if x > 0.5 and c - a - b integer * Conditionally, a recurrence on c to make c-a-b > 0 * * |x| > 1 is rejected. * * The parameters a, b, c are considered to be integer * valued if they are within 1.0e-14 of the nearest integer * (1.0e-13 for IEEE arithmetic). * * ACCURACY: * * * Relative error (-1 < x < 1): * arithmetic domain # trials peak rms * IEEE -1,7 230000 1.2e-11 5.2e-14 * * Several special cases also tested with a, b, c in * the range -7 to 7. * * ERROR MESSAGES: * * A "partial loss of precision" message is printed if * the internally estimated relative error exceeds 1^-12. * A "singularity" message is printed on overflow or * in cases not addressed (such as x < -1). */ /* hyperg.c * * Confluent hypergeometric function * * * * SYNOPSIS: * * double a, b, x, y, hyperg(); * * y = hyperg( a, b, x ); * * * * DESCRIPTION: * * Computes the confluent hypergeometric function * * 1 2 * a x a(a+1) x * F ( a,b;x ) = 1 + ---- + --------- + ... * 1 1 b 1! b(b+1) 2! * * Many higher transcendental functions are special cases of * this power series. * * As is evident from the formula, b must not be a negative * integer or zero unless a is an integer with 0 >= a > b. * * The routine attempts both a direct summation of the series * and an asymptotic expansion. In each case error due to * roundoff, cancellation, and nonconvergence is estimated. * The result with smaller estimated error is returned. * * * * ACCURACY: * * Tested at random points (a, b, x), all three variables * ranging from 0 to 30. * Relative error: * arithmetic domain # trials peak rms * DEC 0,30 2000 1.2e-15 1.3e-16 * IEEE 0,30 30000 1.8e-14 1.1e-15 * * Larger errors can be observed when b is near a negative * integer or zero. Certain combinations of arguments yield * serious cancellation error in the power series summation * and also are not in the region of near convergence of the * asymptotic series. An error message is printed if the * self-estimated relative error is greater than 1.0e-12. * */ /* i0.c * * Modified Bessel function of order zero * * * * SYNOPSIS: * * double x, y, i0(); * * y = i0( x ); * * * * DESCRIPTION: * * Returns modified Bessel function of order zero of the * argument. * * The function is defined as i0(x) = j0( ix ). * * The range is partitioned into the two intervals [0,8] and * (8, infinity). Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC 0,30 6000 8.2e-17 1.9e-17 * IEEE 0,30 30000 5.8e-16 1.4e-16 * */ /* i0e.c * * Modified Bessel function of order zero, * exponentially scaled * * * * SYNOPSIS: * * double x, y, i0e(); * * y = i0e( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of order zero of the argument. * * The function is defined as i0e(x) = exp(-|x|) j0( ix ). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,30 30000 5.4e-16 1.2e-16 * See i0(). * */ /* i1.c * * Modified Bessel function of order one * * * * SYNOPSIS: * * double x, y, i1(); * * y = i1( x ); * * * * DESCRIPTION: * * Returns modified Bessel function of order one of the * argument. * * The function is defined as i1(x) = -i j1( ix ). * * The range is partitioned into the two intervals [0,8] and * (8, infinity). Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC 0, 30 3400 1.2e-16 2.3e-17 * IEEE 0, 30 30000 1.9e-15 2.1e-16 * * */ /* i1e.c * * Modified Bessel function of order one, * exponentially scaled * * * * SYNOPSIS: * * double x, y, i1e(); * * y = i1e( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of order one of the argument. * * The function is defined as i1(x) = -i exp(-|x|) j1( ix ). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0, 30 30000 2.0e-15 2.0e-16 * See i1(). * */ /* igam.c * * Incomplete gamma integral * * * * SYNOPSIS: * * double a, x, y, igam(); * * y = igam( a, x ); * * DESCRIPTION: * * The function is defined by * * x * - * 1 | | -t a-1 * igam(a,x) = ----- | e t dt. * - | | * | (a) - * 0 * * * In this implementation both arguments must be positive. * The integral is evaluated by either a power series or * continued fraction expansion, depending on the relative * values of a and x. * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,30 200000 3.6e-14 2.9e-15 * IEEE 0,100 300000 9.9e-14 1.5e-14 */ /* igamc() * * Complemented incomplete gamma integral * * * * SYNOPSIS: * * double a, x, y, igamc(); * * y = igamc( a, x ); * * DESCRIPTION: * * The function is defined by * * * igamc(a,x) = 1 - igam(a,x) * * inf. * - * 1 | | -t a-1 * = ----- | e t dt. * - | | * | (a) - * x * * * In this implementation both arguments must be positive. * The integral is evaluated by either a power series or * continued fraction expansion, depending on the relative * values of a and x. * * ACCURACY: * * Tested at random a, x. * a x Relative error: * arithmetic domain domain # trials peak rms * IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15 * IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15 */ /* igami() * * Inverse of complemented imcomplete gamma integral * * * * SYNOPSIS: * * double a, x, p, igami(); * * x = igami( a, p ); * * DESCRIPTION: * * Given p, the function finds x such that * * igamc( a, x ) = p. * * Starting with the approximate value * * 3 * x = a t * * where * * t = 1 - d - ndtri(p) sqrt(d) * * and * * d = 1/9a, * * the ro