/* Machine-dependent software floating-point definitions. Sparc userland (_Q_*) version. Copyright (C) 1997,1998,1999, 2002, 2006 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Richard Henderson (rth@cygnus.com), Jakub Jelinek (jj@ultra.linux.cz) and David S. Miller (davem@redhat.com). The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include <fpu_control.h> #include <stdlib.h> #define _FP_W_TYPE_SIZE 32 #define _FP_W_TYPE unsigned long #define _FP_WS_TYPE signed long #define _FP_I_TYPE long #define _FP_MUL_MEAT_S(R,X,Y) \ _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm) #define _FP_MUL_MEAT_D(R,X,Y) \ _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm) #define _FP_MUL_MEAT_Q(R,X,Y) \ _FP_MUL_MEAT_4_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm) #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y) #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y) #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_4_udiv(Q,R,X,Y) #define _FP_NANFRAC_S ((_FP_QNANBIT_S << 1) - 1) #define _FP_NANFRAC_D ((_FP_QNANBIT_D << 1) - 1), -1 #define _FP_NANFRAC_Q ((_FP_QNANBIT_Q << 1) - 1), -1, -1, -1 #define _FP_NANSIGN_S 0 #define _FP_NANSIGN_D 0 #define _FP_NANSIGN_Q 0 #define _FP_KEEPNANFRACP 1 /* If one NaN is signaling and the other is not, * we choose that one, otherwise we choose X. */ /* For _Qp_* and _Q_*, this should prefer X, for * CPU instruction emulation this should prefer Y. * (see SPAMv9 B.2.2 section). */ #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ do { \ if ((_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs) \ && !(_FP_FRAC_HIGH_RAW_##fs(Y) & _FP_QNANBIT_##fs)) \ { \ R##_s = Y##_s; \ _FP_FRAC_COPY_##wc(R,Y); \ } \ else \ { \ R##_s = X##_s; \ _FP_FRAC_COPY_##wc(R,X); \ } \ R##_c = FP_CLS_NAN; \ } while (0) /* Some assembly to speed things up. */ #define __FP_FRAC_ADD_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \ __asm__ ("addcc %r7,%8,%2\n\ addxcc %r5,%6,%1\n\ addx %r3,%4,%0" \ : "=r" ((USItype)(r2)), \ "=&r" ((USItype)(r1)), \ "=&r" ((USItype)(r0)) \ : "%rJ" ((USItype)(x2)), \ "rI" ((USItype)(y2)), \ "%rJ" ((USItype)(x1)), \ "rI" ((USItype)(y1)), \ "%rJ" ((USItype)(x0)), \ "rI" ((USItype)(y0)) \ : "cc") #define __FP_FRAC_SUB_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \ __asm__ ("subcc %r7,%8,%2\n\ subxcc %r5,%6,%1\n\ subx %r3,%4,%0" \ : "=r" ((USItype)(r2)), \ "=&r" ((USItype)(r1)), \ "=&r" ((USItype)(r0)) \ : "%rJ" ((USItype)(x2)), \ "rI" ((USItype)(y2)), \ "%rJ" ((USItype)(x1)), \ "rI" ((USItype)(y1)), \ "%rJ" ((USItype)(x0)), \ "rI" ((USItype)(y0)) \ : "cc") #define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \ do { \ /* We need to fool gcc, as we need to pass more than 10 \ input/outputs. */ \ register USItype _t1 __asm__ ("g1"), _t2 __asm__ ("g2"); \ __asm__ __volatile__ ("\ addcc %r8,%9,%1\n\ addxcc %r6,%7,%0\n\ addxcc %r4,%5,%%g2\n\ addx %r2,%3,%%g1" \ : "=&r" ((USItype)(r1)), \ "=&r" ((USItype)(r0)) \ : "%rJ" ((USItype)(x3)), \ "rI" ((USItype)(y3)), \ "%rJ" ((USItype)(x2)), \ "rI" ((USItype)(y2)), \ "%rJ" ((USItype)(x1)), \ "rI" ((USItype)(y1)), \ "%rJ" ((USItype)(x0)), \ "rI" ((USItype)(y0)) \ : "cc", "g1", "g2"); \ __asm__ __volatile__ ("" : "=r" (_t1), "=r" (_t2)); \ r3 = _t1; r2 = _t2; \ } while (0) #define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \ do { \ /* We need to fool gcc, as we need to pass more than 10 \ input/outputs. */ \ register USItype _t1 __asm__ ("g1"), _t2 __asm__ ("g2"); \ __asm__ __volatile__ ("\ subcc %r8,%9,%1\n\ subxcc %r6,%7,%0\n\ subxcc %r4,%5,%%g2\n\ subx %r2,%3,%%g1" \ : "=&r" ((USItype)(r1)), \ "=&r" ((USItype)(r0)) \ : "%rJ" ((USItype)(x3)), \ "rI" ((USItype)(y3)), \ "%rJ" ((USItype)(x2)), \ "rI" ((USItype)(y2)), \ "%rJ" ((USItype)(x1)), \ "rI" ((USItype)(y1)), \ "%rJ" ((USItype)(x0)), \ "rI" ((USItype)(y0)) \ : "cc", "g1", "g2"); \ __asm__ __volatile__ ("" : "=r" (_t1), "=r" (_t2)); \ r3 = _t1; r2 = _t2; \ } while (0) #define __FP_FRAC_DEC_3(x2,x1,x0,y2,y1,y0) __FP_FRAC_SUB_3(x2,x1,x0,x2,x1,x0,y2,y1,y0) #define __FP_FRAC_DEC_4(x3,x2,x1,x0,y3,y2,y1,y0) __FP_FRAC_SUB_4(x3,x2,x1,x0,x3,x2,x1,x0,y3,y2,y1,y0) #define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i) \ __asm__ ("addcc %3,%4,%3\n\ addxcc %2,%%g0,%2\n\ addxcc %1,%%g0,%1\n\ addx %0,%%g0,%0" \ : "=&r" ((USItype)(x3)), \ "=&r" ((USItype)(x2)), \ "=&r" ((USItype)(x1)), \ "=&r" ((USItype)(x0)) \ : "rI" ((USItype)(i)), \ "0" ((USItype)(x3)), \ "1" ((USItype)(x2)), \ "2" ((USItype)(x1)), \ "3" ((USItype)(x0)) \ : "cc") /* Obtain the current rounding mode. */ #ifndef FP_ROUNDMODE #define FP_ROUNDMODE ((_fcw >> 30) & 0x3) #endif /* Exception flags. */ #define FP_EX_INVALID (1 << 4) #define FP_EX_OVERFLOW (1 << 3) #define FP_EX_UNDERFLOW (1 << 2) #define FP_EX_DIVZERO (1 << 1) #define FP_EX_INEXACT (1 << 0) #define _FP_DECL_EX fpu_control_t _fcw #ifdef __UCLIBC_HAS_FPU__ #define FP_INIT_ROUNDMODE \ do { \ _FPU_GETCW(_fcw); \ } while (0) /* Simulate exceptions using double arithmetics. */ extern double ___Q_simulate_exceptions(int exc); #define FP_HANDLE_EXCEPTIONS \ do { \ if (!_fex) \ { \ /* This is the common case, so we do it inline. \ * We need to clear cexc bits if any. \ */ \ extern unsigned long long ___Q_numbers[]; \ __asm__ __volatile__("\ ldd [%0], %%f30\n\ faddd %%f30, %%f30, %%f30\ " : : "r" (___Q_numbers) : "f30"); \ } \ else \ ___Q_simulate_exceptions (_fex); \ } while (0) #endif