/* Atomic operations used inside libc. Linux/SH version.
Copyright (C) 2003 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
. */
#include
typedef int8_t atomic8_t;
typedef uint8_t uatomic8_t;
typedef int_fast8_t atomic_fast8_t;
typedef uint_fast8_t uatomic_fast8_t;
typedef int16_t atomic16_t;
typedef uint16_t uatomic16_t;
typedef int_fast16_t atomic_fast16_t;
typedef uint_fast16_t uatomic_fast16_t;
typedef int32_t atomic32_t;
typedef uint32_t uatomic32_t;
typedef int_fast32_t atomic_fast32_t;
typedef uint_fast32_t uatomic_fast32_t;
typedef int64_t atomic64_t;
typedef uint64_t uatomic64_t;
typedef int_fast64_t atomic_fast64_t;
typedef uint_fast64_t uatomic_fast64_t;
typedef intptr_t atomicptr_t;
typedef uintptr_t uatomicptr_t;
typedef intmax_t atomic_max_t;
typedef uintmax_t uatomic_max_t;
/* SH kernel has implemented a gUSA ("g" User Space Atomicity) support
for the user space atomicity. The atomicity macros use this scheme.
Reference:
Niibe Yutaka, "gUSA: Simple and Efficient User Space Atomicity
Emulation with Little Kernel Modification", Linux Conference 2002,
Japan. http://lc.linux.or.jp/lc2002/papers/niibe0919h.pdf (in
Japanese).
Niibe Yutaka, "gUSA: User Space Atomicity with Little Kernel
Modification", LinuxTag 2003, Rome.
http://www.semmel.ch/Linuxtag-DVD/talks/170/paper.html (in English).
B.N. Bershad, D. Redell, and J. Ellis, "Fast Mutual Exclusion for
Uniprocessors", Proceedings of the Fifth Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pp. 223-233,
October 1992. http://www.cs.washington.edu/homes/bershad/Papers/Rcs.ps
SuperH ABI:
r15: -(size of atomic instruction sequence) < 0
r0: end point
r1: saved stack pointer
*/
#if __GNUC_PREREQ (4, 7)
# define rNOSP "u"
#else
# define rNOSP "r"
#endif
/* Avoid having lots of different versions of compare and exchange,
by having this one complicated version. Parameters:
bwl: b, w or l for 8, 16 and 32 bit versions.
version: val or bool, depending on whether the result is the
previous value or a bool indicating whether the transfer
did happen (note this needs inverting before being
returned in atomic_compare_and_exchange_bool).
*/
#define __arch_compare_and_exchange_n(mem, newval, oldval, bwl, version) \
({ signed long __arch_result; \
__asm__ __volatile__ ("\
.align 2\n\
mova 1f,r0\n\
nop\n\
mov r15,r1\n\
mov #-8,r15\n\
0: mov." #bwl " @%1,%0\n\
cmp/eq %0,%3\n\
bf 1f\n\
mov." #bwl " %2,@%1\n\
1: mov r1,r15\n\
.ifeqs \"bool\",\"" #version "\"\n\
movt %0\n\
.endif\n" \
: "=&r" (__arch_result) \
: rNOSP (mem), rNOSP (newval), rNOSP (oldval) \
: "r0", "r1", "t", "memory"); \
__arch_result; })
#define __arch_compare_and_exchange_val_8_acq(mem, newval, oldval) \
__arch_compare_and_exchange_n(mem, newval, (int8_t)(oldval), b, val)
#define __arch_compare_and_exchange_val_16_acq(mem, newval, oldval) \
__arch_compare_and_exchange_n(mem, newval, (int16_t)(oldval), w, val)
#define __arch_compare_and_exchange_val_32_acq(mem, newval, oldval) \
__arch_compare_and_exchange_n(mem, newval, (int32_t)(oldval), l, val)
/* XXX We do not really need 64-bit compare-and-exchange. At least
not in the moment. Using it would mean causing portability
problems since not many other 32-bit architectures have support for
such an operation. So don't define any code for now. */
# define __arch_compare_and_exchange_val_64_acq(mem, newval, oldval) \
(abort (), 0)
/* For "bool" routines, return if the exchange did NOT occur */
#define __arch_compare_and_exchange_bool_8_acq(mem, newval, oldval) \
(! __arch_compare_and_exchange_n(mem, newval, (int8_t)(oldval), b, bool))
#define __arch_compare_and_exchange_bool_16_acq(mem, newval, oldval) \
(! __arch_compare_and_exchange_n(mem, newval, (int16_t)(oldval), w, bool))
#define __arch_compare_and_exchange_bool_32_acq(mem, newval, oldval) \
(! __arch_compare_and_exchange_n(mem, newval, (int32_t)(oldval), l, bool))
# define __arch_compare_and_exchange_bool_64_acq(mem, newval, oldval) \
(abort (), 0)
/* Similar to the above, have one template which can be used in a
number of places. This version returns both the old and the new
values of the location. Parameters:
bwl: b, w or l for 8, 16 and 32 bit versions.
oper: The instruction to perform on the old value.
Note old is not sign extended, so should be an unsigned long.
*/
#define __arch_operate_old_new_n(mem, value, old, new, bwl, oper) \
(void) ({ __asm__ __volatile__ ("\
.align 2\n\
mova 1f,r0\n\
mov r15,r1\n\
nop\n\
mov #-8,r15\n\
0: mov." #bwl " @%2,%0\n\
mov %0,%1\n\
" #oper " %3,%1\n\
mov." #bwl " %1,@%2\n\
1: mov r1,r15" \
: "=&r" (old), "=&r"(new) \
: rNOSP (mem), rNOSP (value) \
: "r0", "r1", "memory"); \
})
#define __arch_exchange_and_add_8_int(mem, value) \
({ int32_t __value = (value), __new, __old; \
__arch_operate_old_new_n((mem), __value, __old, __new, b, add); \
__old; })
#define __arch_exchange_and_add_16_int(mem, value) \
({ int32_t __value = (value), __new, __old; \
__arch_operate_old_new_n((mem), __value, __old, __new, w, add); \
__old; })
#define __arch_exchange_and_add_32_int(mem, value) \
({ int32_t __value = (value), __new, __old; \
__arch_operate_old_new_n((mem), __value, __old, __new, l, add); \
__old; })
#define __arch_exchange_and_add_64_int(mem, value) \
(abort (), 0)
#define atomic_exchange_and_add(mem, value) \
__atomic_val_bysize (__arch_exchange_and_add, int, mem, value)
/* Again, another template. We get a slight optimisation when the old value
does not need to be returned. Parameters:
bwl: b, w or l for 8, 16 and 32 bit versions.
oper: The instruction to perform on the old value.
*/
#define __arch_operate_new_n(mem, value, bwl, oper) \
({ int32_t __value = (value), __new; \
__asm__ __volatile__ ("\
.align 2\n\
mova 1f,r0\n\
mov r15,r1\n\
mov #-6,r15\n\
0: mov." #bwl " @%1,%0\n\
" #oper " %2,%0\n\
mov." #bwl " %0,@%1\n\
1: mov r1,r15" \
: "=&r" (__new) \
: rNOSP (mem), rNOSP (__value) \
: "r0", "r1", "memory"); \
__new; \
})
#define __arch_add_8_int(mem, value) \
__arch_operate_new_n(mem, value, b, add)
#define __arch_add_16_int(mem, value) \
__arch_operate_new_n(mem, value, w, add)
#define __arch_add_32_int(mem, value) \
__arch_operate_new_n(mem, value, l, add)
#define __arch_add_64_int(mem, value) \
(abort (), 0)
#define atomic_add(mem, value) \
((void) __atomic_val_bysize (__arch_add, int, mem, value))
#define __arch_add_negative_8_int(mem, value) \
(__arch_operate_new_n(mem, value, b, add) < 0)
#define __arch_add_negative_16_int(mem, value) \
(__arch_operate_new_n(mem, value, w, add) < 0)
#define __arch_add_negative_32_int(mem, value) \
(__arch_operate_new_n(mem, value, l, add) < 0)
#define __arch_add_negative_64_int(mem, value) \
(abort (), 0)
#define atomic_add_negative(mem, value) \
__atomic_bool_bysize (__arch_add_negative, int, mem, value)
#define __arch_add_zero_8_int(mem, value) \
(__arch_operate_new_n(mem, value, b, add) == 0)
#define __arch_add_zero_16_int(mem, value) \
(__arch_operate_new_n(mem, value, w, add) == 0)
#define __arch_add_zero_32_int(mem, value) \
(__arch_operate_new_n(mem, value, l, add) == 0)
#define __arch_add_zero_64_int(mem, value) \
(abort (), 0)
#define atomic_add_zero(mem, value) \
__atomic_bool_bysize (__arch_add_zero, int, mem, value)
#define atomic_increment_and_test(mem) atomic_add_zero((mem), 1)
#define atomic_decrement_and_test(mem) atomic_add_zero((mem), -1)
#define __arch_bit_set_8_int(mem, value) \
__arch_operate_new_n(mem, 1<<(value), b, or)
#define __arch_bit_set_16_int(mem, value) \
__arch_operate_new_n(mem, 1<<(value), w, or)
#define __arch_bit_set_32_int(mem, value) \
__arch_operate_new_n(mem, 1<<(value), l, or)
#define __arch_bit_set_64_int(mem, value) \
(abort (), 0)
#define __arch_add_64_int(mem, value) \
(abort (), 0)
#define atomic_bit_set(mem, value) \
((void) __atomic_val_bysize (__arch_bit_set, int, mem, value))
#define __arch_bit_test_set_8_int(mem, value) \
({ int32_t __value = 1<<(value), __new, __old; \
__arch_operate_old_new_n((mem), __value, __old, __new, b, or); \
__old & __value; })
#define __arch_bit_test_set_16_int(mem, value) \
({ int32_t __value = 1<<(value), __new, __old; \
__arch_operate_old_new_n((mem), __value, __old, __new, w, or); \
__old & __value; })
#define __arch_bit_test_set_32_int(mem, value) \
({ int32_t __value = 1<<(value), __new, __old; \
__arch_operate_old_new_n((mem), __value, __old, __new, l, or); \
__old & __value; })
#define __arch_bit_test_set_64_int(mem, value) \
(abort (), 0)
#define atomic_bit_test_set(mem, value) \
__atomic_val_bysize (__arch_bit_test_set, int, mem, value)